Parity Games

Sven Schewe
University of Liverpool

AVACS alumni presentation, September $29^{\text {th }}, 2015$

Beautiful games you cannot stop playing

(1) Parity Games with Few Colours
(3) Parity Games with Many Colours

- Parity Games with Few Colours
- Parity Games with Few Colours
- Parity Games with Few Colours
(0) Parity Games with Bounded Treewidth
- Strategy Improvement Algorithms

Beautiful games you cannot stop playing

(1) Parity Games with Few Colours
(2) Parity Games with Many Colours
(0) Parity Games with Few Colours
(1) Parity Games with Few Colours
(0) Parity Games with Few Colours
(0) Parity Games with Bounded Treewidth
© Strategy Improvement Algorithms

Beautiful games you cannot stop playing

(1) Parity Games with Few Colours
(2) Parity Games with Many Colours
(3) Parity Games with Few Colours
(1) Parity Games with Few Colours
(0) Parity Games with Few Colours
(0) Parity Games with Bounded Treewidth
(Strategy Improvement Algorithms

Parity Game $\mathcal{P}=\left\langle V_{0}, V_{1}, E, \alpha\right\rangle$

- V_{0}, and V_{1} are disjoint finite sets of game positions
- $E \subseteq V_{0} \cup V_{1} \times V_{0} \cup V_{1}$ is a set of edges, and
- $\alpha: V_{0} \cup V_{1} \rightarrow \mathbb{N}$ is a colouring function

Played by placing a pebble on the arena

- on V_{0} player 0 chooses a successor, on V_{1} player 1
\Rightarrow infinite play, highest colour occurring infinite often even \leadsto player 0 wins, odd \leadsto player 1 wins

Applications

- (non)emptiness game for parity tree automata
- acceptance game for parity tree automata
- satisfiability checking for CTL*, ATL*, μ-calculus, AT μ C ...
- open synthesis for LTL, CTL*, ATL*, μ-calculus, AT $\mu \mathrm{C} \ldots$
- μ-calculus model checking \& extensions (e.g., graded μ-calculus, alternating-time μ-calculus)
- CTL* model checking (three colours), ATL* model checking
- module checking

Simple \& Symmetric

Simple Reduction

[Zwick+Paterson 96]

Symmetric Problem

Until recently, only a single deterministic symmetric algorithm Fixed Point, [Zwick+Paterson 96]

Obvious Facts and Open Questions

Obvious Facts
 - symmetric
 \Rightarrow in class \cap co-class
 - single fixed point of DPG can be guessed
 \Rightarrow in UP \cap co-UP

[Jurdziński 00]

Less Obvious Facts

- PLS
- $n^{O(\sqrt{n})}$
- PPAD
[Beckmann and Moller 08]
[Jurdziński, Zwick, and Paterson 08] [Etessami and Yannakakis 10]

Obvious Facts and Open Questions

Obvious Facts

- symmetric
\Rightarrow in class \cap co-class
- single fixed point of DPG can be guessed
\Rightarrow in UP \cap co-UP
[Jurdziński 00]

Open Problems
.P?

- RP / ZPP?
- pay-off games: $2^{O(\sqrt{n})}$?, $2^{o(n)}$?

Overview

- Reachability Games
- Büchi Games
- Parity Games
- McNaughton
- Jurdziński, Paterson, and Zwick
- Browne \& al. / Jurdziński
- their synthesis
- bounded tree-width \& Co
- strategy improvement

Part I

Reachability \& Büchi Games

Solving Reachability Games

Algorithm - for $\mathcal{R}=\left\langle V_{0}, V_{1}, E, F\right\rangle$

- start with the final states F
- set $W \diamond$ to \diamond-attractor (F)

Solving Reachability Games

```
arena
```


Algorithm - for $\mathcal{R}=\left\langle V_{0}, V_{1}, E, F\right\rangle$

- start with the final states F
- set W_{\diamond} to \diamond-attractor (F)
- set W_{\square} to V

Solving Reachability Games

Algorithm - for $\mathcal{R}=\left\langle V_{0}, V_{1}, E, F\right\rangle$

- start with the final states F
- set W_{\diamond} to \diamond-attractor (F)
- set W_{\square} to $V \backslash W_{\diamond}$

Traps and Paradises

Traps and Paradises

- A \diamond-trap is a set of states where \diamond cannot get out.

$$
\text { E.g.: } W_{\square}
$$

- Remark: $W_{\diamond}=W_{\diamond}^{\infty}$ is usually no \square-trap.
- A \square-paradise is a \diamond-trap such that \square can win without leaving it

Solving Büchi Games

Algorithm - for $\mathcal{B}=\left\langle V_{0}, V_{1}, E, F\right\rangle$

- start with the final states F
- set A to \diamond-attractor (F)
- $U_{\square}=V \backslash A$ is a \square-paradise (strategy: stay there)
- $V_{\square}=\square$-attractor $\left(U_{\square}\right)$ is a \square-paradise
- W_{\diamond} for \mathcal{B} is W_{\diamond} for $\mathcal{B} \backslash V_{\square}$
- solve $\mathcal{B} \backslash V_{\square}$

Solving Büchi Games

Algorithm - for $\mathcal{B}=\left\langle V_{0}, V_{1}, E, F\right\rangle$

- start with the final states F
- set A to \diamond-attractor (F)
- $U_{\square}=V \backslash A$ is a \square-paradise
- $V_{\square}=\square$-attractor $\left(U_{\square}\right)$ is a \square-paradise (go to U_{\square}, stay)
- W_{\diamond} for \mathcal{B} is W_{\diamond} for $\mathcal{B} \backslash V_{\square}$
- solve $\mathcal{B} \backslash V_{\square}$

Solving Büchi Games

Algorithm - for $\mathcal{B}=\left\langle V_{0}, V_{1}, E, F\right\rangle$

- start with the final states F
- set A to \diamond-attractor (F)
- $U_{\square}=V \backslash A$ is a \square-paradise
(strategy: stay there)
- $V_{\square}=\square$-attractor $\left(U_{\square}\right)$ is a \square-paradise (go to U_{\square}, stay)
- W_{\diamond} for \mathcal{B} is W_{\diamond} for $\mathcal{B} \backslash V_{\square}$
- solve $\mathcal{B} \backslash V_{\square}$

Solving Büchi Games

Algorithm - for $\mathcal{B}=\left\langle V_{0}, V_{1}, E, F\right\rangle$

- start with the final states F
- set A to \diamond-attractor (F)
- $U_{\square}=V \backslash A$ is a \square-paradise
- $V_{\square}=\square$-attractor $\left(U_{\square}\right)$ is a \square-paradise
(strategy: stay there)
- W_{\diamond} for \mathcal{B} is W_{\diamond} for $\mathcal{B} \backslash V_{\square}$
- solve $\mathcal{B} \backslash V_{\square}$

Solving Büchi Games

Remark

- 'outdated' approach
- $O\left(n^{2}\right)$

Part II

Parity Games

Overview

\# colours	3	4	5	6	7	8
McNaughton	$O\left(m n^{2}\right)$	$O\left(m n^{3}\right)$	$O\left(m n^{4}\right)$	$O\left(m n^{5}\right)$	$O\left(m n^{6}\right)$	$O\left(m n^{7}\right)$
Browne \& al.	$O\left(m n^{3}\right)$	$O\left(m n^{3}\right)$	$O\left(m n^{4}\right)$	$O\left(m n^{4}\right)$	$O\left(m n^{5}\right)$	$O\left(m n^{5}\right)$
Jurdziński	$O\left(m n^{2}\right)$	$O\left(m n^{2}\right)$	$O\left(m n^{3}\right)$	$O\left(m n^{3}\right)$	$O\left(m n^{4}\right)$	$O\left(m n^{4}\right)$
w.o. strategy / [GW15]	$O(m n)$		$O\left(m n^{2}\right)$		$O\left(m n^{3}\right)$	
Big Steps [S07]	$O(m n)$	$O\left(m n^{1 \frac{1}{2}}\right)$	$O\left(m n^{2}\right)$	$O\left(m n^{2 \frac{1}{3}}\right)$	$O\left(m n^{2} \frac{3}{4}\right)$	$O\left(m n^{3} \frac{1}{16}\right)$
[CHL15]	$O\left(n^{2.5}\right)$	$O\left(n^{3}\right)$	$O\left(n^{3 \frac{1}{3}}\right)$	$O\left(n^{3 \frac{3}{4}}\right)$	$O\left(n^{4 \frac{1}{16}}\right)$	$O\left(n^{4} \frac{9}{20}\right)$

Parity Game $\mathcal{P}=\left\langle V_{0}, V_{1}, E, \alpha\right\rangle$

- V_{0}, and V_{1} are disjoint finite sets of game positions
- $E \subseteq V_{0} \cup V_{1} \times V_{0} \cup V_{1}$ is a set of edges, and
- $\alpha: V_{0} \cup V_{1} \rightarrow \mathbb{N}$ is a colouring function

Played by placing a pebble on the arena

- on V_{0} player 0 chooses a successor, on V_{1} player 1
\Rightarrow infinite play, highest colour occurring infinite often even \leadsto player 0 wins, odd \leadsto player 1 wins

McNaughton's Algorithm

arena

$$
\alpha^{-1}(c)
$$

McNaughton's Algorithm - for $P=\left\langle V_{0}, V_{1}, E, \alpha\right\rangle$

- set c to the maximal colour, σ to c modulo 2 , and $\bar{\sigma}$ to $1-\sigma$
- set $\left(U_{0}, U_{1}\right)$ to $\mathrm{McNaughton}(\mathcal{P}$
- set $11 / \sigma$ to $\bar{\sigma}$-attractor $\left(1 / \frac{1}{\sigma}\right)$, and set W_{σ} to 0
- $\operatorname{set}\left(U_{0}, U_{1}\right)$ to $\operatorname{McNaughton}\left(\mathcal{P}>W_{\bar{\sigma}}\right)$
- return $(1 \wedge / 1 u, 1 \wedge 1 / 1)$

McNaughton's Algorithm

```
arena
```


McNaughton's Algorithm - for $P=\left\langle V_{0}, V_{1}, E, \alpha\right\rangle$

- set c to the maximal colour, σ to c modulo 2 , and $\bar{\sigma}$ to $1-\sigma$
- set A to σ-attractor $\left(\alpha^{-1}(c)\right)$
- set $\left(U_{0}, U_{1}\right)$ to $M c N a u g h t o n(P>A)$
- set $W_{\bar{\sigma}}$ to $\bar{\sigma}$-attractor $\left(U_{\bar{\sigma}}\right)$, and set W_{σ} to \emptyset
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{McNaughton}\left(\mathcal{P} \backslash W_{\bar{\sigma}}\right)$
- return

McNaughton's Algorithm

McNaughton's Algorithm - for $P=\left\langle V_{0}, V_{1}, E, \alpha\right\rangle$

- set c to the maximal colour, σ to c modulo 2 , and $\bar{\sigma}$ to $1-\sigma$
- set A to σ-attractor $\left(\alpha^{-1}(c)\right)$
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{McNaughton}(\mathcal{P} \backslash A)$
- set $W_{\bar{\sigma}}$ to $\bar{\sigma}$-attractor $\left(U_{\bar{\sigma}}\right)$, and set W_{σ} to \emptyset
- set $\left(U_{0}, U_{1}\right)$ to $\mathrm{McNaughton}\left(\mathcal{P} \backslash W_{\bar{\sigma}}\right)$
- return (1 /al

McNaughton's Algorithm

McNaughton's Algorithm - for $P=\left\langle V_{0}, V_{1}, E, \alpha\right\rangle$

- set c to the maximal colour, σ to c modulo 2 , and $\bar{\sigma}$ to $1-\sigma$
- set A to σ-attractor $\left(\alpha^{-1}(c)\right)$
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{McNaughton}(\mathcal{P} \backslash A)$
- set $W_{\bar{\sigma}}$ to $\bar{\sigma}$-attractor $\left(U_{\bar{\sigma}}\right)$, and set W_{σ} to \emptyset
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{McNaughton}\left(\mathcal{P} \backslash W_{\bar{\sigma}}\right)$
- return $\left(W_{0} \dot{\cup} U_{0}, W_{1} \dot{\cup} U_{1}\right)$

McNaughton's Algorithm

McNaughton's Algorithm - for $P=\left\langle V_{0}, V_{1}, E, \alpha\right\rangle$

- set c to the maximal colour, σ to c modulo 2 , and $\bar{\sigma}$ to $1-\sigma$
- set A to σ-attractor $\left(\alpha^{-1}(c)\right)$
- set $\left(U_{0}, U_{1}\right)$ to McNaughton $(\mathcal{P} \backslash A)$
- set $W_{\bar{\sigma}}$ to $\bar{\sigma}$-attractor $\left(U_{\bar{\sigma}}\right)$, and set W_{σ} to \emptyset
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{McNaughton}\left(\mathcal{P} \backslash W_{\bar{\sigma}}\right)$
- return $\left(W_{0} \dot{\cup} U_{0}, W_{1} \dot{\cup} U_{1}\right)$

McNaughton's Algorithm—Weakness

McNaughton's Algorithm - for $P=\left\langle V_{0}, V_{1}, E, \alpha\right\rangle$

- set c to the maximal colour, σ to c modulo 2 , and $\bar{\sigma}$ to $1-\sigma$
- set A to σ-attractor $\left(\alpha^{-1}(c)\right)$
- set $\left(U_{0}, U_{1}\right)$ to McNaughton $(\mathcal{P} \backslash A)$
- set $W_{\bar{\sigma}}$ to $\bar{\sigma}$-attractor $\left(U_{\bar{\sigma}}\right)$, and set W_{σ} to \emptyset
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{McNaughton}\left(\mathcal{P} \backslash W_{\bar{\sigma}}\right)$
- return $\left(W_{0} \dot{\cup} U_{0}, W_{1} \dot{\cup} U_{1}\right)$

σ-Paradise

Definition - σ-Paradise

- Subset P_{σ} of the positions, s.t. player σ has a strategy to
- stay in P_{σ} ($\overline{\text {-trap }}$)
- that is winning for all states in P_{σ}.
- σ-Paradises are closed under
- union, and
- σ-attractor.

σ / π-Paradise

Definition $-\sigma / \pi$-Paradise

- Paradise P_{σ}^{π} that contains all σ-paradises of size $\leq \pi$.
- σ / π-Paradises are closed under
- union with any σ-paradise, and
- σ-attractor.

Big-Step Algorithm

 arenaBigStep Algorithm - for $\mathcal{P}=\left\langle V_{0}, V_{1}, E, \alpha\right\rangle$

- set c to the maximal color, σ to c modulo 2 , and $\bar{\sigma}$ to $1-\sigma$
- compute $\bar{\sigma} / \pi$-paradise $P \frac{\pi}{\bar{\sigma}}$, and set $\overline{P_{\bar{\sigma}}}$ to $\bar{\sigma}$-attractor $\left(P \frac{\pi}{\bar{\sigma}}\right)$
- set \mathcal{P}^{\prime} to $\mathcal{P} \backslash \overline{P \frac{\pi}{\sigma}}$
- set A to σ-attractor $\left(\alpha^{-1}(c)\right)$
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{BigStep}\left(\mathcal{P}^{\prime} \backslash A\right)$
- set $W_{\bar{\sigma}}$ to $\bar{\sigma}$-attractor $\left(U_{\bar{\sigma}}\right) \cup \overline{P \frac{\pi}{\sigma}}$, and set W_{σ} to \emptyset
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{BigStep}\left(\mathcal{P} \backslash W_{\bar{\sigma}}\right)$, return $\left(W_{0} \dot{U} U_{0}, W_{1} \dot{\cup} U_{1}\right)$

Big-Step Algorithm

BigStep Algorithm - for $\mathcal{P}=\left\langle V_{0}, V_{1}, E, \alpha\right\rangle$

- set c to the maximal color, σ to c modulo 2 , and $\bar{\sigma}$ to $1-\sigma$
- compute $\bar{\sigma} / \pi$-paradise $P \frac{\pi}{\bar{\sigma}}$, and set $\overline{P_{\bar{\sigma}}}$ to $\bar{\sigma}$-attractor $\left(P \frac{\pi}{\bar{\sigma}}\right)$
- set \mathcal{P}^{\prime} to $\mathcal{P} \backslash \overline{P_{\bar{\sigma}}}$
- set A to σ-attractor $\left(\alpha^{-1}(c)\right)$
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{BigStep}\left(\mathcal{P}^{\prime} \backslash A\right)$
- set $W_{\bar{\sigma}}$ to $\bar{\sigma}$-attractor $\left(U_{\bar{\sigma}}\right) \cup \overline{P \frac{\pi}{\sigma}}$, and set W_{σ} to \emptyset
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{BigStep}\left(\mathcal{P} \backslash W_{\bar{\sigma}}\right)$, return $\left(W_{0} \dot{U} U_{0}, W_{1} \dot{\cup} U_{1}\right)$

Big-Step Algorithm

BigStep Algorithm - for $\mathcal{P}=\left\langle V_{0}, V_{1}, E, \alpha\right\rangle$

- set c to the maximal color, σ to c modulo 2 , and $\bar{\sigma}$ to $1-\sigma$
- compute $\bar{\sigma} / \pi$-paradise $P \frac{\pi}{\bar{\sigma}}$, and set $\overline{P_{\bar{\sigma}}}$ to $\bar{\sigma}$-attractor $\left(P \frac{\pi}{\bar{\sigma}}\right)$
- set \mathcal{P}^{\prime} to $\mathcal{P} \backslash \overline{P_{\bar{\sigma}}}$
- set A to σ-attractor $\left(\alpha^{-1}(c)\right)$
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{BigStep}\left(\mathcal{P}^{\prime} \backslash A\right)$
- set $W_{\bar{\sigma}}$ to $\bar{\sigma}$-attractor $\left(U_{\bar{\sigma}}\right) \cup \overline{P \frac{\pi}{\sigma}}$, and set W_{σ} to \emptyset
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{BigStep}\left(\mathcal{P} \backslash W_{\bar{\sigma}}\right)$, return $\left(W_{0} \dot{U} U_{0}, W_{1} \dot{\cup} U_{1}\right)$

Big-Step Algorithm

BigStep Algorithm - for $\mathcal{P}=\left\langle V_{0}, V_{1}, E, \alpha\right\rangle$

- set c to the maximal color, σ to c modulo 2 , and $\bar{\sigma}$ to $1-\sigma$
- compute $\bar{\sigma} / \pi$-paradise $P \frac{\pi}{\bar{\sigma}}$, and set $\overline{P_{\bar{\sigma}}}$ to $\bar{\sigma}$-attractor $\left(P \frac{\pi}{\bar{\sigma}}\right)$
- set \mathcal{P}^{\prime} to $\mathcal{P} \backslash \overline{P_{\bar{\sigma}}}$
- set A to σ-attractor $\left(\alpha^{-1}(c)\right)$
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{BigStep}\left(\mathcal{P}^{\prime} \backslash A\right)$
- set $W_{\bar{\sigma}}$ to $\bar{\sigma}$-attractor $\left(U_{\bar{\sigma}}\right) \cup \overline{P \frac{\pi}{\sigma}}$, and set W_{σ} to \emptyset
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{BigStep}\left(\mathcal{P} \backslash W_{\bar{\sigma}}\right)$, return $\left(W_{0} \dot{U} U_{0}, W_{1} \dot{\cup} U_{1}\right)$

Big-Step Algorithm

BigStep Algorithm - for $\mathcal{P}=\left\langle V_{0}, V_{1}, E, \alpha\right\rangle$

- set c to the maximal color, σ to c modulo 2 , and $\bar{\sigma}$ to $1-\sigma$
- compute $\bar{\sigma} / \pi$-paradise $P_{\bar{\sigma}}$, and set $\overline{P_{\bar{\sigma}}}$ to $\bar{\sigma}$-attractor $\left(P_{\bar{\sigma}}^{\pi}\right)$
- set \mathcal{P}^{\prime} to $\mathcal{P} \backslash \overline{P_{\bar{\sigma}}}$
- set A to σ-attractor $\left(\alpha^{-1}(c)\right)$
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{BigStep}\left(\mathcal{P}^{\prime} \backslash A\right)$
- set $W_{\bar{\sigma}}$ to $\bar{\sigma}$-attractor $\left(U_{\bar{\sigma}}\right) \cup \overline{P_{\bar{\sigma}}^{\pi}}$, and set W_{σ} to \emptyset
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{BigStep}\left(\mathcal{P} \backslash W_{\bar{\sigma}}\right)$, return $\left(W_{0} \dot{U} U_{0}, W_{1} \dot{\cup} U_{1}\right)$

Big-Step Algorithm

BigStep Algorithm - for $\mathcal{P}=\left\langle V_{0}, V_{1}, E, \alpha\right\rangle$

- set c to the maximal color, σ to c modulo 2 , and $\bar{\sigma}$ to $1-\sigma$
- compute $\bar{\sigma} / \pi$-paradise $P \frac{\pi}{\sigma}$, and set $\overline{P_{\bar{\sigma}}}$ to $\bar{\sigma}$-attractor $\left(P \frac{\pi}{\sigma}\right)$
- set \mathcal{P}^{\prime} to $\mathcal{P} \backslash \overline{P_{\bar{\sigma}}}$
- set A to σ-attractor $\left(\alpha^{-1}(c)\right)$
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{BigStep}\left(\mathcal{P}^{\prime} \backslash A\right)$
- set $W_{\bar{\sigma}}$ to $\bar{\sigma}$-attractor $\left(U_{\bar{\sigma}}\right) \cup \overline{P_{\bar{\sigma}}}$, and set W_{σ} to \emptyset
- set $\left(U_{0}, U_{1}\right)$ to $\operatorname{BigStep}\left(\mathcal{P} \backslash W_{\bar{\sigma}}\right)$, return $\left(W_{0} \dot{U} U_{0}, W_{1} \dot{\cup} U_{1}\right)$

Jurdziński, Paterson, and Zwick

- invented this approache
- used it to establish a deterministic $n^{O(\sqrt{n})}$ bound

Brute Force

- try all sets of size up to $\pi \in O(\sqrt{n})$
- there are some $n^{O(\sqrt{n})}$ many
- each level has up to $O(\sqrt{n})$ many calls
- call tree of size $n^{O(\sqrt{n})}$
drawback: c is, in fact, usually tiny compared to \sqrt{n}

Browne \& al., Jurdziński

If you follow a winning strategy of even on W_{0}, then

- player odd cannot force $>\left|\alpha^{-1}(c)\right|$ occurences of any odd colour c without a higher even colour in between
- player even can force $>\left|\alpha^{-1}(c)\right|$ occurences of some (not a particular!) even colour c without a higher odd colour in between

Browne \& al., Jurdziński

Rules:
Jurdziński: backwards, order on counter vector

- we start at some initial positions with counters for, say, the odd colours only, inially set to 0
- each player chooses how to continue on her vertices
- if we pass an odd colour c, the counter is increased
- if we pass an even colour c, all counters for smaller colours are re-set
- player odd wins if a counter exceeds $\left|\alpha^{-1}(c)\right|$

Big Steps - What if c is Small?
 - the common case -

Stop counting at π

- $\lceil 0.5 c\rceil$ many counters
- their sum bounded by π
- $\leq\binom{\pi+\lceil 0.5 c\rceil}{\pi} \approx \underline{\pi^{\lceil 0.5 c\rceil}}$ values
- covers all σ-paradises $P_{\bar{\sigma}}$ with $\left|P_{\bar{\sigma}}\right| \leq \pi$
- Complexity: $O\left(c m \pi^{\lceil 0.5 c\rceil}\right)$

Big-Step Algorithm

Solving Parity Games in Big Steps - Complexity

number of colours	3	4	5	6	7	8
paradise construction	-	$O(m n)$	$O\left(m n^{1 \frac{1}{2}}\right)$	$O\left(m n^{2}\right)$	$O\left(m n^{2 \frac{1}{3}}\right)$	$O\left(m n^{2 \frac{3}{4}}\right)$
chosen parameter $\pi_{c}(n)$	-	$n^{\frac{1}{2}}$	$n^{\frac{1}{2}}$	$n^{\frac{2}{3}}$	$n^{\frac{7}{12}}$	$n^{\frac{11}{16}}$
number of iterations $\frac{n}{\pi_{c}(n)}$	-	$n^{\frac{1}{2}}$	$n^{\frac{1}{2}}$	$n^{\frac{1}{3}}$	$n^{\frac{5}{12}}$	$n^{\frac{5}{16}}$
solving complexity	$O(m n)$	$O\left(m n^{1 \frac{1}{2}}\right)$	$O\left(m n^{2}\right)$	$O\left(m n^{2 \frac{1}{3}}\right)$	$O\left(m n^{2 \frac{3}{4}}\right)$	$O\left(m n^{3 \frac{1}{16}}\right)$

State of the Art

\# colours	3	4	5	6	7	8
McNaughton	$O\left(m n^{2}\right)$	$O\left(m n^{3}\right)$	$O\left(m n^{4}\right)$	$O\left(m n^{5}\right)$	$O\left(m n^{6}\right)$	$O\left(m n^{7}\right)$
Browne \& al.	$O\left(m n^{3}\right)$	$O\left(m n^{3}\right)$	$O\left(m n^{4}\right)$	$O\left(m n^{4}\right)$	$O\left(m n^{5}\right)$	$O\left(m n^{5}\right)$
Jurdziński	$O\left(m n^{2}\right)$	$O\left(m n^{2}\right)$	$O\left(m n^{3}\right)$	$O\left(m n^{3}\right)$	$O\left(m n^{4}\right)$	$O\left(m n^{4}\right)$
w.o. strategy / [GW15]	$O(m n)$		$O\left(m n^{2}\right)$		$O\left(m n^{3}\right)$	
Big Steps [S07]	$O(m n)$	$O\left(m n^{1 \frac{1}{2}}\right)$	$O\left(m n^{2}\right)$	$O\left(m n^{2 \frac{1}{3}}\right)$	$O\left(m n^{2 \frac{3}{4}}\right)$	$O\left(m n^{3} \frac{1}{16}\right)$
[CHL15]	$O\left(n^{2.5}\right)$	$O\left(n^{3}\right)$	$O\left(n^{3 \frac{1}{3}}\right)$	$O\left(n^{3 \frac{3}{4}}\right)$	$O\left(n^{4 \frac{1}{16}}\right)$	$O\left(n^{\left.4 \frac{9}{20}\right)}\right.$

- Significantly improved complexity bound
- from $O\left(c m\left(\frac{n}{[0.5 c\rfloor}\right)^{\lfloor 0.5 c\rfloor}\right)$ to $O\left(m\left(\frac{\kappa n}{c}\right)^{\gamma(c)}\right)$ for $\gamma(c)=\frac{1}{3} c+\frac{1}{2}-\frac{1}{3 c}-\frac{1}{\left[\frac{c}{2}\right\rceil\left[\frac{c}{2}\right]}$ if c is even, and $\gamma(c)=\frac{1}{3} c+\frac{1}{2}-\frac{1}{\left[\frac{c}{2} \backslash\left[\frac{c}{2}\right]\right.}$ if c is odd
- Second improvement that reduces the growth in \# colours

Part III

Bounded Treewidth \& Co

Other Parameter

Parity games are in P for other parameters than \# colours

- tree-width
[Obdrzálek 03]
- DAG-width [Berwanger, Dawar, Hunter, and Kreutzer 06]
- clique-width

Hope
Can this be a foundation for a tractable algorithm?

A 'Positive' Result

Fearnley and Schewe 2013

- NC^{2} for bounded tree-width k
+ improved bound $O\left(n c^{2(k+1)^{2}}\right) \leadsto O\left(\left(n k^{2} k!(c+1)^{3 k+1}\right)\right.$
+ fixed parameter tractable for bounded DAG-width
- LogCFL for bounded tree-width
- LogCFL for bounded cleaque-width
- LogDCFL for tree-width 2

A 'Positive' Result

Fearnley and Schewe 2013

- $N C^{2}$ for bounded tree-width k
+ improved bound $O\left(n c^{2(k+1)^{2}}\right) \leadsto O\left(\left(n k^{2} k!(c+1)^{3 k+1}\right)\right.$
+ fixed parameter tractable for bounded DAG-width

Improved by Ganardi 2015

- LogCFL for bounded tree-width
- LogCFL for bounded cleaque-width
- LogDCFL for tree-width 2

Part IV

Strategy Improvement

Classic Strategy Improvement

fix strategy

Classic Strategy Improvement

find best response and evaluate

Classic Strategy Improvement

 apply local improvements

Classic Strategy Improvement

find best response \& evaluate

Classic Strategy Improvement

 no local improvent: done

CSI - failed hope

- was long hoped to be tractable
- many update policies
\forall exponential lower bounds
- use static update policy
\exists PSPACE powerful
[Friedmann 11,...]
[Fearnley+Savani 15]

SYMMETRYЯTヨMMYS

Symmetry and Complexity
(1) guess valuation
(2) verify
\Rightarrow one value: UP symmetry: UP $\cap C o U P$

Iterated Fixed Point [Emerson+Lei 86]
parity games

- similar treatment
- best performing algorithm

Optimal Strategy Improvement
[Schewe 08] parity games, MPG mean partitions

- some symmetry
- fab performance

Why not?

Naive symmetric strategy improvement
Question: Why has SSI not been thoroughly studied?
Answer: Anne Condon has proved it wrong
[Condon 93]
(1) Cuncurrent Switch
(2) Alternating Best Response

Concurrent Switch

starting strategies

Concurrent Switch

evaluate

Concurrent Switch

update strategies

Concurrent Switch

update evaluation

Concurrent Switch

update strategies

Concurrent Switch

update evaluation

Concurrent Switch

update strategy

Concurrent Switch

update evaluation

Concurrent Switch update strategy (cycle)

Symmetric Strategy Improvement starting strategies

Symmetric Strategy Improvement
 evaluate - best response

Symmetric Strategy Improvement

best response \& improvement

Symmetric Strategy Improvement update (done)

Symmetric Strategy Improvement

Can SSI help overcome problems of CSI?
Question: How about single player examples? [Fearnley 10]
Answer: Easy (but no surprise there)
Question: How about Friedmann's traps? [Friedmann 11,...]
Answer: Yes but this doesn'timply there are no traps
Question: Less iterations on random games?
Answer: Yes but probably not half
Question: Is SSI polynomial?
Answer: Look at the weather! Isn't it lovely?

Friedmann's Traps

Switch Rule	1	2	3	4	5	6	7	8	9	10
Cunningham	2	6	9	12	15	18	21	24	27	30
CunninghamSubexp	1	1	1	1	1	1	1	1	1	1
FearnleySubexp	4	7	11	13	17	21	25	29	33	37
FriedmannSubexp	4	9	13	15	19	23	27	31	35	39
RandomEdgeExpTest	1	2	2	2	2	2	2	2	2	2
RandomFacetSubexp	1	2	7	9	11	13	15	17	19	21
SwitchAllBestExp	4	5	8	11	12	13	15	17	18	19
SwitchAllBestSubExp	5	7	9	11	13	15	17	19	21	23
SwitchAllSubExp	3	5	7	9	10	11	12	13	14	15
SwitchAllExp	3	4	6	8	10	11	12	14	16	18
ZadehExp	-	6	10	14	18	21	25	28	32	35
ZadehSubexp	5	9	13	16	20	23	27	30	34	37

Parity Games

with few colours

\# colours	3	4	5	6	7	8
McNaughton	$O\left(m n^{2}\right)$	$O\left(m n^{3}\right)$	$O\left(m n^{4}\right)$	$O\left(m n^{5}\right)$	$O\left(m n^{6}\right)$	$O\left(m n^{7}\right)$
Browne \& al.	$O\left(m n^{3}\right)$	$O\left(m n^{3}\right)$	$O\left(m n^{4}\right)$	$O\left(m n^{4}\right)$	$O\left(m n^{5}\right)$	$O\left(m n^{5}\right)$
Jurdziński	$O\left(m n^{2}\right)$	$O\left(m n^{2}\right)$	$O\left(m n^{3}\right)$	$O\left(m n^{3}\right)$	$O\left(m n^{4}\right)$	$O\left(m n^{4}\right)$
w.o. strategy / [GW15]	$O(m n)$		$O\left(m n^{2}\right)$		$O\left(m n^{3}\right)$	
Big Steps [S07]	$O(m n)$	$O\left(m n^{1 \frac{1}{2}}\right)$	$O\left(m n^{2}\right)$	$O\left(m n^{2 \frac{1}{3}}\right)$	$O\left(m n^{2 \frac{3}{4}}\right)$	$O\left(m n^{3 \frac{1}{16}}\right)$
[CHL15]	$O\left(n^{2.5}\right)$	$O\left(n^{3}\right)$	$O\left(n^{3 \frac{1}{3}}\right)$	$O\left(n^{3 \frac{3}{4}}\right)$	$O\left(n^{4 \frac{1}{16}}\right)$	$O\left(n^{4} \frac{9}{20}\right)$

Parity Games

Further complexity resuts

- NP \cap CoNP
- UP $\cap C o U P$
- PLS
- PPAD
- $n^{O(\sqrt{n})}$
[NcNaughton 93]
[Zwick and Paterson '96, Jurdziński 98]
[Beckmann and Moller 08] [Etessami and Yannakakis 10]
[Jurdziński, Zwick, and Paterson 08]
- in LogCFL for bounded tree- and clique-width [Ganardi 15]
- fixed parameter tractable for bounded DAG-width

Parity \& Pay-Off Games

Strategy Improvement

- deterministic update [Puri 95, Vöge and Jurdziński 00]
- randomised updates [Ludwig 95, Björklund and Vorobyov 07]
- one-step optimal updates [S 08]
- they are all expensive
[Friedmann 09, FHZ 11a]
- symmetric strategy improvement

Parity Games

... are simply beautiful!

