Parity Games

Sven Schewe

University of Liverpool

AVACS alumni presentation, September 29th, 2015

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

Beautiful games you cannot stop playing

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Parity Games with Few Colours

- Parity Games with Many Colours
- Parity Games with Few Colours
- Parity Games with Few Colours
- Parity Games with Few Colours
- Parity Games with Bounded Treewidth
- Strategy Improvement Algorithms

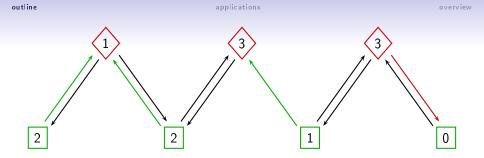
Beautiful games you cannot stop playing

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

- Parity Games with Few Colours
- Parity Games with Many Colours
- Parity Games with Few Colours
- Parity Games with Few Colours
- Parity Games with Few Colours
- Parity Games with Bounded Treewidth
- Strategy Improvement Algorithms

Beautiful games you cannot stop playing

- Parity Games with Few Colours
- Parity Games with Many Colours
- Parity Games with Few Colours
- Parity Games with Few Colours
- Parity Games with Few Colours
- Parity Games with Bounded Treewidth
- Strategy Improvement Algorithms



Parity Game $\mathcal{P} = \langle V_0, V_1, E, \alpha \rangle$

- V_0 , and V_1 are disjoint finite sets of game positions
- $E \subseteq V_0 \cup V_1 \times V_0 \cup V_1$ is a set of edges, and
- $\alpha: V_0 \cup V_1 \to \mathbb{N}$ is a colouring function

Played by placing a pebble on the arena - on V_0 player 0 chooses a successor, on V_1 player 1 \Rightarrow infinite play, highest colour occurring infinite often even \rightarrow player 0 wins, odd \rightarrow player 1 wins

Applications

- (non)emptiness game for parity tree automata
- acceptance game for parity tree automata
- satisfiability checking for CTL*, ATL*, μ -calculus, AT μ C ...
- open synthesis for LTL, CTL*, ATL*, μ -calculus, AT μ C
- μ-calculus model checking & extensions

 (e.g., graded μ-calculus, alternating-time μ-calculus)
- CTL* model checking (three colours), ATL* model checking
- module checking

Simple & Symmetric

Symmetric Problem

Until recently, only a single deterministic symmetric algorithm Fixed Point, [Zwick+Paterson 96]

Obvious Facts and Open Questions

Obvious Facts

- symmetric
- \Rightarrow in class \cap co-class
 - single fixed point of DPG can be guessed
- \Rightarrow in UP \cap co-UP

[Jurdziński 00]

Less Obvious Facts	
• PLS	[Beckmann and Moller 08]
• $n^{O(\sqrt{n})}$	[Jurdziński, Zwick, and Paterson 08]
PPAD	[Etessami and Yannakakis 10]

Obvious Facts and Open Questions

Obvious Facts

- symmetric
- \Rightarrow in class \cap co-class
 - single fixed point of DPG can be guessed
- \Rightarrow in UP \cap co-UP

[Jurdziński 00]

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Open Problems	
•P?	
• RP / ZPP?	
• pay-off games: $2^{O(\sqrt{n})}$?, $2^{o(n)}$?	

Overview

- Reachability Games
- Büchi Games
- Parity Games
 - McNaughton
 - Jurdziński, Paterson, and Zwick
 - Browne & al. / Jurdziński
 - their synthesis
- bounded tree-width & Co
- strategy improvement

few colours

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

Büchi Games

Part I

Reachability & Büchi Games

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Solving Reachability Games

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Algorithm – for $\mathcal{R} = \langle V_0, V_1, E, F \rangle$

- start with the final states F
- set W_◇ to ◇ -attractor(F)
- set W_{\Box} to $V \smallsetminus W_{\diamondsuit}$

Solving Reachability Games

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Algorithm – for $\mathcal{R} = \langle V_0, V_1, E, F \rangle$

- start with the final states F
- set W_{\diamondsuit} to \diamondsuit -attractor(F)

• set W_{\Box} to $V \smallsetminus W_{\Diamond}$

Solving Reachability Games

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Algorithm – for $\mathcal{R} = \langle V_0, V_1, E, F \rangle$

- start with the final states F
- set W_◇ to ◇ -attractor(F)
- set W_{\Box} to $V \smallsetminus W_{\diamondsuit}$

Traps and Paradises

Traps and Paradises

- A \diamondsuit -trap is a set of states where \diamondsuit cannot get out.
 - E.g.: *W*

Example: W

э

・ロト ・聞ト ・ヨト ・ヨト

- Remark: $W_{\bigcirc} = W_{\bigcirc}^{\infty}$ is usually no \Box -trap.
- A □ -paradise is a ◇ -trap such that □ can win without leaving it

Algorithm – for $\mathcal{B} = \langle V_0, V_1, E, F \rangle$

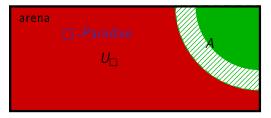
- start with the final states F
- set A to \diamondsuit -attractor(F)

•
$$U_{\Box} = V \smallsetminus A$$
 is a \Box -paradise

- (Strategy, stay the
- $V_{\Box} = \Box$ -attractor(U_{\Box}) is a \Box -paradise (go to U_{\Box} , stay)
- W_{\diamondsuit} for \mathcal{B} is W_{\diamondsuit} for $\mathcal{B} \smallsetminus V_{\Box}$
- solve $\mathcal{B} \smallsetminus V_{\Box}$

Algorithm – for $\mathcal{B} = \langle V_0, V_1, E, F \rangle$

- start with the final states F
- set A to \diamondsuit -attractor(F)
- $U_{\Box} = V \smallsetminus A$ is a \Box -paradise
- $V_{\Box} = \Box$ -attractor(U_{\Box}) is a \Box -paradise (go to U_{\Box} , stay)
- W_{\diamondsuit} for \mathcal{B} is W_{\diamondsuit} for $\mathcal{B}\smallsetminus V_{\Box}$
- solve $\mathcal{B} \smallsetminus V_{\Box}$

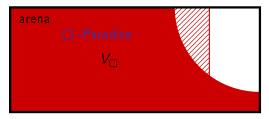


Algorithm – for $\mathcal{B} = \langle V_0, V_1, E, F \rangle$

- start with the final states F
- set A to \diamondsuit -attractor(F)
- $U_{\Box} = V \smallsetminus A$ is a \Box -paradise

(strategy: stay there)

- $V_{\Box} = \Box$ -attractor(U_{\Box}) is a \Box -paradise (go to U_{\Box} , stay)
- W_{\diamondsuit} for \mathcal{B} is W_{\diamondsuit} for $\mathcal{B} \smallsetminus V_{\Box}$
- solve $\mathcal{B} \smallsetminus V_{\Box}$



Algorithm – for $\mathcal{B} = \langle V_0, V_1, E, F \rangle$

- start with the final states F
- set A to \diamondsuit -attractor(F)

•
$$U_{\Box} = V \smallsetminus A$$
 is a \Box -paradise

- $V_{\Box} = \Box$ -attractor(U_{\Box}) is a \Box -paradise
- W_{\diamondsuit} for \mathcal{B} is W_{\diamondsuit} for $\mathcal{B}\smallsetminus V_{\Box}$
- solve $\mathcal{B} \smallsetminus V_{\Box}$

(go to U_{\Box} , stay)

(strategy: stay there)

Büchi Games

Solving Büchi Games



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

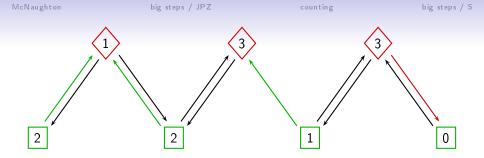
Part II

Parity Games

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Overview

# colours	3	4	5	6	7	8
McNaughton	$O(m n^2)$	<i>O</i> (<i>m</i> n ³)	$O(m n^4)$	O(m n⁵)	0(m n ⁶)	<i>O</i> (<i>m n</i> ⁷)
Browne & al.	<i>O</i> (<i>m n</i> ³)	O(m n ³)	$O(m n^4)$	$O(m n^4)$	<i>O</i> (<i>m n</i> ⁵)	O(m n ⁵)
Jur dziń ski	$O(m n^2)$	$O(m n^2)$	<i>O</i> (<i>m n</i> ³)	O(m n ³)	$O(m n^4)$	$O(m n^4)$
w.o. strategy / [GW15]	<i>O</i> (<i>m n</i>)		$O(m n^2)$		O(m n ³)	
Big Steps [S07]	<i>O</i> (<i>m n</i>)	$O(m n^{1\frac{1}{2}})$	$O(m n^2)$	$O(m n^{2\frac{1}{3}})$	$O(m n^{2\frac{3}{4}})$	$O(m n^{3\frac{1}{16}})$
[CHL15]	$O(n^{2.5})$	<i>O</i> (<i>n</i> ³)	$O(n^{3\frac{1}{3}})$	$O(n^{3\frac{3}{4}})$	$O(n^{4\frac{1}{16}})$	$O(n^{4\frac{9}{20}})$



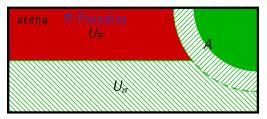
Parity Game $\mathcal{P} = \langle V_0, V_1, E, \alpha \rangle$

- V_0 , and V_1 are disjoint finite sets of game positions
- $E \subseteq V_0 \cup V_1 \times V_0 \cup V_1$ is a set of edges, and
- $\alpha: V_0 \cup V_1 \to \mathbb{N}$ is a colouring function

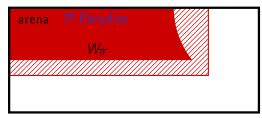
Played by placing a pebble on the arena - on V_0 player 0 chooses a successor, on V_1 player 1 \Rightarrow infinite play, highest colour occurring infinite often even \rightarrow player 0 wins, odd \rightarrow player 1 wins

- set c to the maximal colour, σ to c modulo 2, and $\overline{\sigma}$ to $1-\sigma$
- set A to σ -attractor $(\alpha^{-1}(c))$
- set (U_0, U_1) to McNaughton $(\mathcal{P} \smallsetminus A)$
- set $W_{\overline{\sigma}}$ to $\overline{\sigma}$ -attractor($U_{\overline{\sigma}}$), and set W_{σ} to \emptyset
- set (U_0, U_1) to McNaughton $(\mathcal{P} \smallsetminus W_{\overline{\sigma}})$
- return $(W_0 \dot{\cup} U_0, W_1 \dot{\cup} U_1)$

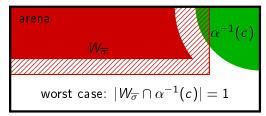
- set c to the maximal colour, σ to c modulo 2, and $\overline{\sigma}$ to $1-\sigma$
- set A to σ -attractor $(\alpha^{-1}(c))$
- set (U_0, U_1) to McNaughton $(\mathcal{P} \smallsetminus A)$
- set $W_{\overline{\sigma}}$ to $\overline{\sigma}$ -attractor($U_{\overline{\sigma}}$), and set W_{σ} to \emptyset
- set (U_0, U_1) to McNaughton $(\mathcal{P} \smallsetminus W_{\overline{\sigma}})$
- return $(W_0 \dot{\cup} U_0, W_1 \dot{\cup} U_1)$



- set c to the maximal colour, σ to c modulo 2, and $\overline{\sigma}$ to $1-\sigma$
- set A to σ -attractor $(\alpha^{-1}(c))$
- set (U_0, U_1) to McNaughton $(\mathcal{P} \smallsetminus A)$
- set $W_{\overline{\sigma}}$ to $\overline{\sigma}$ -attractor($U_{\overline{\sigma}}$), and set W_{σ} to \emptyset
- set (U_0, U_1) to McNaughton $(\mathcal{P} \smallsetminus W_{\overline{\sigma}})$
- return $(W_0 \dot{\cup} U_0, W_1 \dot{\cup} U_1)$

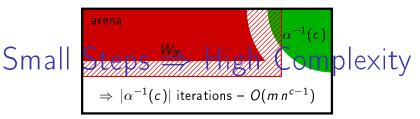


- set c to the maximal colour, σ to c modulo 2, and $\overline{\sigma}$ to $1-\sigma$
- set A to σ -attractor $(\alpha^{-1}(c))$
- set (U_0, U_1) to McNaughton $(\mathcal{P} \smallsetminus A)$
- set $W_{\overline{\sigma}}$ to $\overline{\sigma}$ -attractor($U_{\overline{\sigma}}$), and set W_{σ} to \emptyset
- set (U_0, U_1) to McNaughton $(\mathcal{P} \smallsetminus W_{\overline{\sigma}})$
- return $(W_0 \dot{\cup} U_0, W_1 \dot{\cup} U_1)$



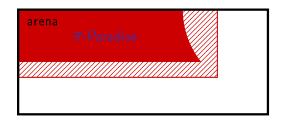
- set c to the maximal colour, σ to c modulo 2, and $\overline{\sigma}$ to $1-\sigma$
- set A to σ -attractor $(\alpha^{-1}(c))$
- set (U_0, U_1) to McNaughton $(\mathcal{P} \smallsetminus A)$
- set $W_{\overline{\sigma}}$ to $\overline{\sigma}$ -attractor($U_{\overline{\sigma}}$), and set W_{σ} to \emptyset
- set (U_0, U_1) to McNaughton $(\mathcal{P} \smallsetminus W_{\overline{\sigma}})$
- return $(W_0 \dot{\cup} U_0, W_1 \dot{\cup} U_1)$

McNaughton's Algorithm—Weakness



- set c to the maximal colour, σ to c modulo 2, and $\overline{\sigma}$ to $1-\sigma$
- set A to σ -attractor $(\alpha^{-1}(c))$
- set (U_0, U_1) to McNaughton $(\mathcal{P} \smallsetminus A)$
- set $W_{\overline{\sigma}}$ to $\overline{\sigma}$ -attractor($U_{\overline{\sigma}}$), and set W_{σ} to \emptyset
- set (U_0, U_1) to McNaughton $(\mathcal{P} \smallsetminus W_{\overline{\sigma}})$
- return $(W_0 \dot{\cup} U_0, W_1 \dot{\cup} U_1)$

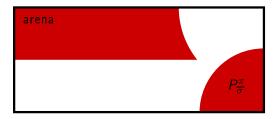
σ -Paradise



Definition – σ -Paradise

- Subset P_{σ} of the positions, s.t. player σ has a strategy to
 - stay in P_{σ} ($\overline{\sigma}$ -trap)
 - that is winning for all states in P_{σ} .
- σ-Paradises are closed under
 - union, and
 - σ -attractor.

 σ/π -Paradise



Definition – σ/π -Paradise

- Paradise P_{σ}^{π} that contains all σ -paradises of size $\leq \pi$.
- σ/π -Paradises are closed under
 - union with any σ -paradise, and
 - σ -attractor.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Big-Step Algorithm

- set c to the maximal color, σ to c modulo 2, and $\overline{\sigma}$ to $1-\sigma$
- compute $\overline{\sigma}/\pi$ -paradise $P_{\overline{\sigma}}^{\pi}$, and set $\overline{P_{\overline{\sigma}}^{\pi}}$ to $\overline{\sigma}$ -attractor($P_{\overline{\sigma}}^{\pi}$)
- set \mathcal{P}' to $\mathcal{P} \smallsetminus \overline{\mathcal{P}_{\sigma}^{\pi}}$
- set A to σ -attractor $(\alpha^{-1}(c))$
- set (U_0, U_1) to $\mathsf{BigStep}(\mathcal{P}' \smallsetminus A)$
- set $W_{\overline{\sigma}}$ to $\overline{\sigma}$ -attractor $(U_{\overline{\sigma}}) \cup \overline{P_{\overline{\sigma}}^{\pi}}$, and set W_{σ} to \emptyset
- set (U_0, U_1) to $\mathsf{BigStep}(\mathcal{P} \smallsetminus W_{\overline{\sigma}})$, return $(W_0 \dot{\cup} U_0, W_1 \dot{\cup} U_1)$

- set c to the maximal color, σ to c modulo 2, and $\overline{\sigma}$ to $1-\sigma$
- compute $\overline{\sigma}/\pi$ -paradise $P_{\overline{\sigma}}^{\pi}$, and set $\overline{P_{\overline{\sigma}}^{\pi}}$ to $\overline{\sigma}$ -attractor($P_{\overline{\sigma}}^{\pi}$)
- set \mathcal{P}' to $\mathcal{P} \smallsetminus \overline{\mathcal{P}_{\sigma}^{\pi}}$
- set A to σ -attractor $(\alpha^{-1}(c))$
- set (U_0, U_1) to $\mathsf{BigStep}(\mathcal{P}' \smallsetminus A)$
- set $W_{\overline{\sigma}}$ to $\overline{\sigma}$ -attractor $(U_{\overline{\sigma}}) \cup \overline{P_{\overline{\sigma}}^{\pi}}$, and set W_{σ} to \emptyset
- set (U_0, U_1) to BigStep $(\mathcal{P} \smallsetminus W_{\overline{\sigma}})$, return $(W_0 \dot{\cup} U_0, W_1 \dot{\cup} U_1)$

counting

- set c to the maximal color, σ to c modulo 2, and $\overline{\sigma}$ to $1-\sigma$
- compute $\overline{\sigma}/\pi$ -paradise $P_{\overline{\sigma}}^{\pi}$, and set $\overline{P_{\overline{\sigma}}^{\pi}}$ to $\overline{\sigma}$ -attractor($P_{\overline{\sigma}}^{\pi}$)
- set \mathcal{P}' to $\mathcal{P} \smallsetminus \overline{\mathcal{P}_{\sigma}^{\pi}}$
- set A to σ -attractor $(\alpha^{-1}(c))$
- set (U_0, U_1) to $\mathsf{BigStep}(\mathcal{P}' \smallsetminus A)$
- set $W_{\overline{\sigma}}$ to $\overline{\sigma}$ -attractor $(U_{\overline{\sigma}}) \cup \overline{P_{\overline{\sigma}}^{\pi}}$, and set W_{σ} to \emptyset
- set (U_0, U_1) to BigStep $(\mathcal{P} \smallsetminus W_{\overline{\sigma}})$, return $(W_0 \dot{\cup} U_0, W_1 \dot{\cup} U_1)$

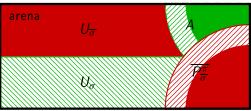
counting

big steps / S

- set c to the maximal color, σ to c modulo 2, and $\overline{\sigma}$ to $1-\sigma$
- compute $\overline{\sigma}/\pi$ -paradise $P_{\overline{\sigma}}^{\pi}$, and set $\overline{P_{\overline{\sigma}}^{\pi}}$ to $\overline{\sigma}$ -attractor($P_{\overline{\sigma}}^{\pi}$)
- set \mathcal{P}' to $\mathcal{P} \smallsetminus \overline{\mathcal{P}_{\sigma}^{\pi}}$
- set A to σ -attractor $(\alpha^{-1}(c))$
- set (U_0, U_1) to $\mathsf{BigStep}(\mathcal{P}' \smallsetminus A)$
- set $W_{\overline{\sigma}}$ to $\overline{\sigma}$ -attractor $(U_{\overline{\sigma}}) \cup \overline{P_{\overline{\sigma}}^{\pi}}$, and set W_{σ} to \emptyset
- set (U_0, U_1) to BigStep $(\mathcal{P} \smallsetminus W_{\overline{\sigma}})$, return $(W_0 \cup U_0, W_1 \cup U_1)$

counting

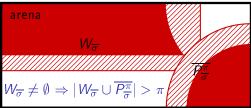
Big-Step Algorithm



- set c to the maximal color, σ to c modulo 2, and $\overline{\sigma}$ to $1-\sigma$
- compute $\overline{\sigma}/\pi$ -paradise $P_{\overline{\sigma}}^{\pi}$, and set $\overline{P_{\overline{\sigma}}^{\pi}}$ to $\overline{\sigma}$ -attractor($P_{\overline{\sigma}}^{\pi}$)
- set \mathcal{P}' to $\mathcal{P} \smallsetminus \overline{\mathcal{P}_{\sigma}^{\pi}}$
- set A to σ -attractor $(\alpha^{-1}(c))$
- set (U_0, U_1) to $\mathsf{BigStep}(\mathcal{P}' \smallsetminus A)$
- set $W_{\overline{\sigma}}$ to $\overline{\sigma}$ -attractor $(U_{\overline{\sigma}}) \cup \overline{P_{\overline{\sigma}}^{\pi}}$, and set W_{σ} to \emptyset
- set (U_0, U_1) to BigStep $(\mathcal{P} \smallsetminus W_{\overline{\sigma}})$, return $(W_0 \dot{\cup} U_0, W_1 \dot{\cup} U_1)$

counting

Big-Step Algorithm



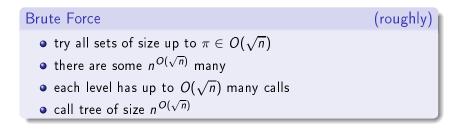
BigStep Algorithm – for $\mathcal{P} = \langle V_0, V_1, E, \alpha \rangle$

- set c to the maximal color, σ to c modulo 2, and $\overline{\sigma}$ to $1-\sigma$
- compute $\overline{\sigma}/\pi$ -paradise $P_{\overline{\sigma}}^{\pi}$, and set $\overline{P_{\overline{\sigma}}^{\pi}}$ to $\overline{\sigma}$ -attractor($P_{\overline{\sigma}}^{\pi}$)
- set \mathcal{P}' to $\mathcal{P} \smallsetminus \overline{\mathcal{P}_{\sigma}^{\pi}}$
- set A to σ -attractor $(\alpha^{-1}(c))$
- set (U_0, U_1) to $\mathsf{BigStep}(\mathcal{P}' \smallsetminus A)$
- set $W_{\overline{\sigma}}$ to $\overline{\sigma}$ -attractor $(U_{\overline{\sigma}}) \cup \overline{P_{\overline{\sigma}}^{\pi}}$, and set W_{σ} to \emptyset
- set (U_0, U_1) to BigStep $(\mathcal{P} \smallsetminus W_{\overline{\sigma}})$, return $(W_0 \cup U_0, W_1 \cup U_1)$

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ うへの

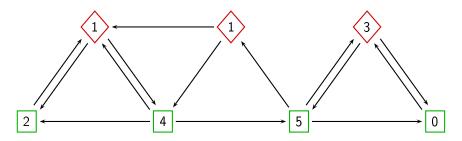
Jurdziński, Paterson, and Zwick

- invented this approache
- used it to establish a deterministic $n^{O(\sqrt{n})}$ bound



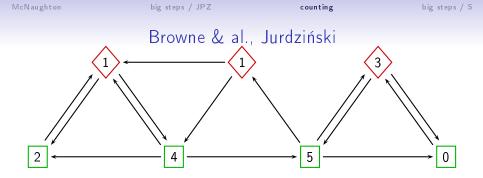
drawback: c is, in fact, usually tiny compared to \sqrt{n}

Browne & al., Jurdziński



If you follow a winning strategy of even on W_0 , then ...

- player odd cannot force > |a⁻¹(c)| occurences of any odd colour c without a higher even colour in between
- player even can force > |α⁻¹(c)| occurences of some (not a particular!) even colour c without a higher odd colour in between



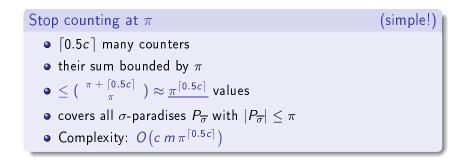
Rules: Jurdziński: backwards, order on counter vector

- we start at some initial positions with counters for, say, the odd colours only, inially set to 0
- each player chooses how to continue on her vertices
- if we pass an odd colour *c*, the counter is increased
- if we pass an even colour *c*, all counters for smaller colours are re-set
- player odd wins if a counter exceeds $|\alpha^{-1}(c)|$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Big Steps – What if c is Small?

- the common case -



big steps / JPZ

counting

big steps / S

Big-Step Algorithm

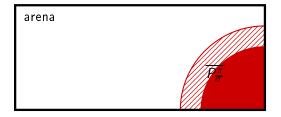
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

big steps / JPZ

counting

big steps / S

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで



big steps / JPZ

counting

big steps / S

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

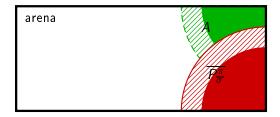


big steps / JPZ

counting

big steps / S

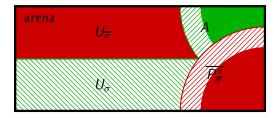
▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで



counting

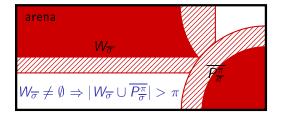
big steps / S

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで



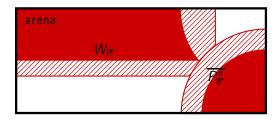
big steps / S

Big-Step Algorithm



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Solving Parity Games in Big Steps - Complexity



number of colours	3	4	5	6	7	8
paradise construction	-	<i>O</i> (<i>m n</i>)	$O(m n^{1\frac{1}{2}})$	$O(m n^2)$	$O(m n^{2\frac{1}{3}})$	$O(m n^{2\frac{3}{4}})$
chosen parameter $\pi_{c}(n)$	-	n ¹ / ₂	n ¹ /2	n ² 3	n 712	$n^{\frac{11}{16}}$
number of iterations $\frac{n}{\pi c(n)}$	-	n ¹ / ₂	n ¹ /2	n ¹ / ₃	n 12	n 516
solving complexity	<i>O</i> (<i>m n</i>)	$O(m n^{1\frac{1}{2}})$	$O(m n^2)$	$O(m n^{2\frac{1}{3}})$	$O(m n^{2\frac{3}{4}})$	$O(m n^{3\frac{1}{16}})$

◆□> ◆□> ◆三> ◆三> 三三 のへで

State of the Art									
# colours	3	4	5	6	7	8			
McNaughton	$O(m n^2)$	<i>O</i> (<i>m n</i> ³)	$O(m n^4)$	<i>O</i> (<i>m n</i> ⁵)	<i>O</i> (<i>m</i> n ⁶)	O(m n ⁷)			
Browne & al.	<i>O</i> (<i>m n</i> ³)	<i>O</i> (<i>m</i> n ³)	$O(m n^4)$	$O(m n^4)$	<i>O</i> (<i>m n</i> ⁵)	O(m n ⁵)			
Jur dziń ski	$O(m n^2)$	$O(m n^2)$	$O(m n^3)$	O(m n ³)	$O(m n^4)$	$O(m n^4)$			
w.o. strategy / [GW15]	<i>O</i> (<i>m n</i>)		$O(m n^2)$		<i>O</i> (<i>m n</i> ³)				
Big Steps [S07]	<i>O</i> (<i>m n</i>)	$O(m n^{1\frac{1}{2}})$	$O(m n^2)$	$O(m n^{2\frac{1}{3}})$	$O(m n^{2\frac{3}{4}})$	$O(m n^{3\frac{1}{16}})$			
[CHL15]	O(n ^{2.5})	<i>O</i> (<i>n</i> ³)	$O(n^{3\frac{1}{3}})$	$O(n^{3\frac{3}{4}})$	$O(n^{4\frac{1}{16}})$	$O(n^{4\frac{9}{20}})$			

- Significantly improved complexity bound
 - from $O(c m(\frac{n}{\lfloor 0.5c \rfloor})^{\lfloor 0.5c \rfloor})$ to $O(m(\frac{\kappa n}{c})^{\gamma(c)})$ for $\gamma(c) = \frac{1}{3}c + \frac{1}{2} - \frac{1}{3c} - \frac{1}{\lceil \frac{c}{2} \rceil \lfloor \frac{c}{2} \rfloor}$ if c is even, and $\gamma(c) = \frac{1}{3}c + \frac{1}{2} - \frac{1}{\lceil \frac{c}{2} \rceil \lfloor \frac{c}{2} \rfloor}$ if c is odd
- Second improvement that reduces the growth in # colours

Part III

Bounded Treewidth & Co

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

Other Parameter

Parity games are in P for other parameters	than # colours
• tree-width	[Obdrzálek 03]
• DAG-width [Berwanger, Dawar, Hunter,	and Kreutzer 06]
 clique-width 	[Obdrzálek 07]

Hope

Can this be a foundation for a tractable algorithm?

A 'Positive' Result

Fearnley and Schewe 2013

- NC² for bounded tree-width k
- + improved bound $O(n c^{2(k+1)^2}) \rightsquigarrow O((n k^2 k! (c+1)^{3k+1}))$

+ fixed parameter tractable for bounded DAG-width

Improved by Ganardi 2015

- LogCFL for bounded tree-width
- LogCFL for bounded cleaque-width
- LogDCFL for tree-width 2

A 'Positive' Result

Fearnley and Schewe 2013

- NC² for bounded tree-width k
- + improved bound $O(n c^{2(k+1)^2}) \rightsquigarrow O((n k^2 k! (c+1)^{3k+1}))$
- + fixed parameter tractable for bounded DAG-width

Improved by Ganardi 2015

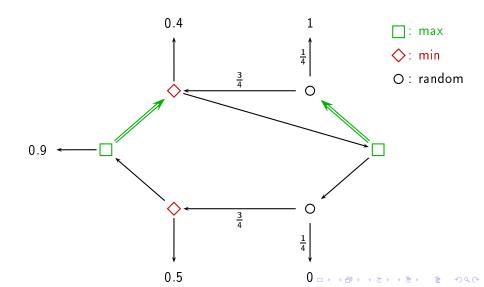
- LogCFL for bounded tree-width
- LogCFL for bounded cleaque-width
- LogDCFL for tree-width 2

Part IV

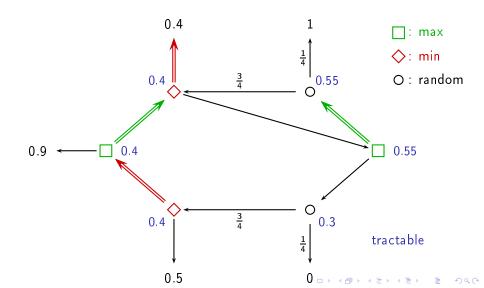
Strategy Improvement

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

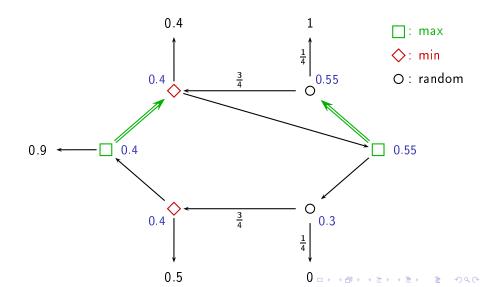
Classic Strategy Improvement fix strategy



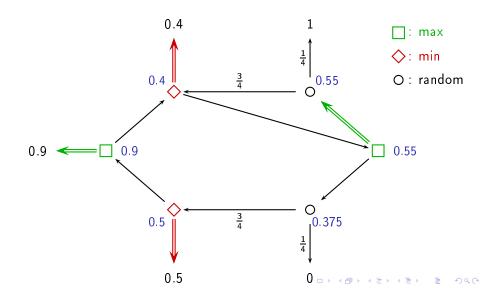
Classic Strategy Improvement find best response and evaluate



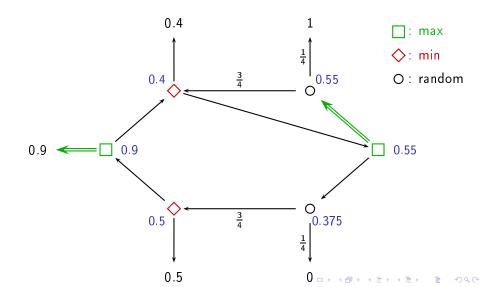
Classic Strategy Improvement apply local improvements



Classic Strategy Improvement find best response & evaluate



Classic Strategy Improvement no local improvent: done



CSI – failed hope

- was long hoped to be tractable
- many update policies
- \forall exponential lower bounds
 - use static update policy
- ∃ PSPACE powerful

[Friedmann 11,...]

[Fearnley+Savani 15]

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

SYMMETRYЯТ∃ММУS

Symmetry and Complexity	[Jurdziński 98]
guess valuation	
verify	
⇒ one value: UP symmetry: UP∩CoUP	

Iterated Fixed Point [Emerson+Lei 86]

- similar treatment
- best performing algorithm

Optimal Strategy Improvement [Schewe 08] parity games, MPG mean partitions

- some symmetry
- fab performance

parity games

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへ⊙

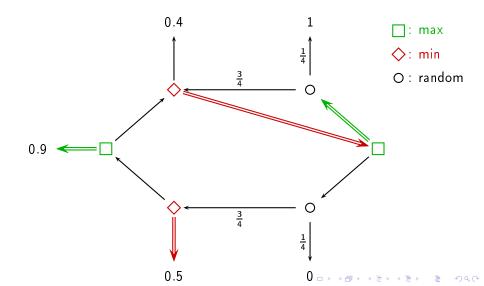
Why not?

Naive symmetric strategy improvementQuestion: Why has SSI not been thoroughly studied?Answer: Anne Condon has proved it wrong[Condon 93]

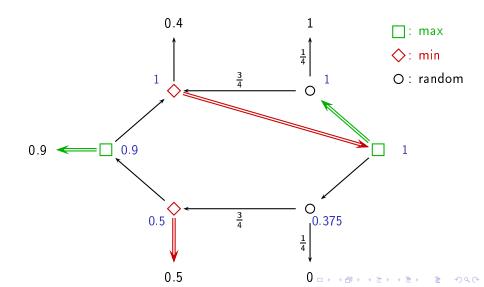
Cuncurrent Switch

Alternating Best Response

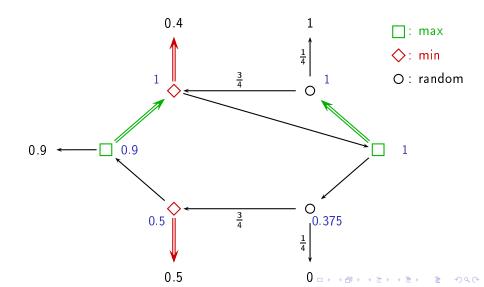
starting strategies



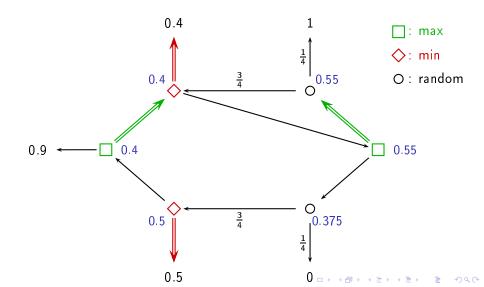
evaluate



update strategies

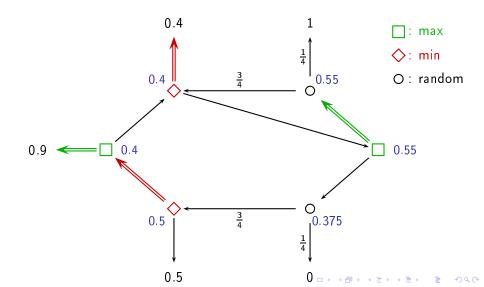


update evaluation



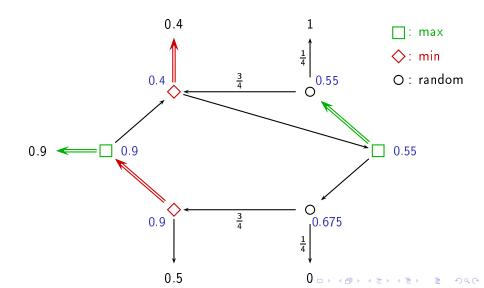
Concurrent Switch

update strategies



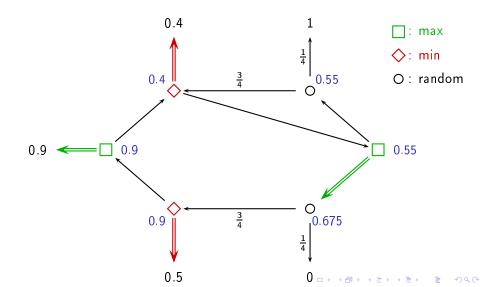
Concurrent Switch

update evaluation

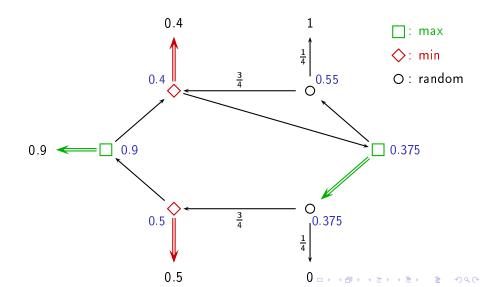


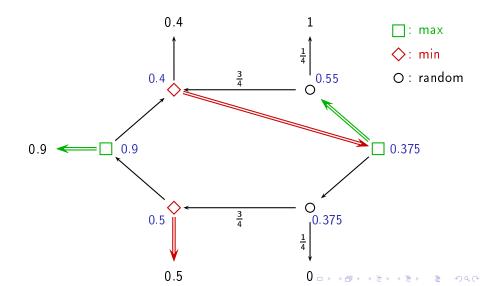
CSI

update strategy

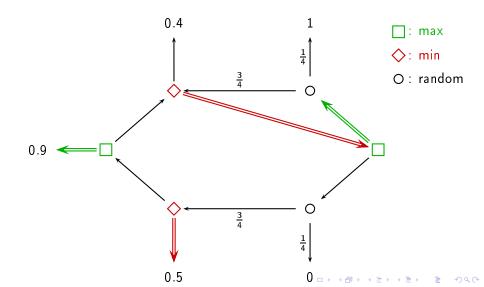


update evaluation



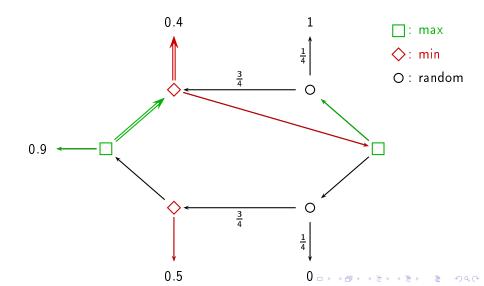


Symmetric Strategy Improvement starting strategies

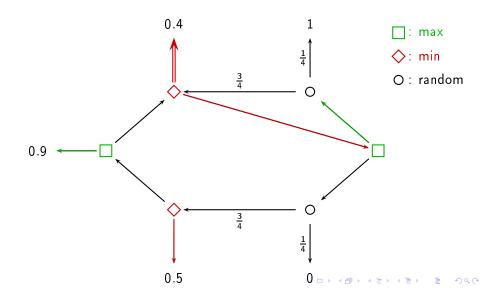


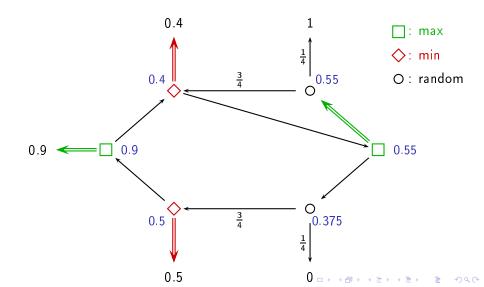
Symmetric Strategy Improvement

evaluate - best response



Symmetric Strategy Improvement

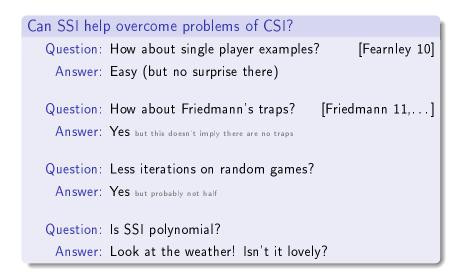




・ロト ・雪ト ・ヨト・・ロト

э.

Symmetric Strategy Improvement



Friedmann's Traps

Switch Rule	1	2	3	4	5	6	7	8	9	10
Cunningham	2	6	9	12	15	18	21	24	27	30
CunninghamSubexp	1	1	1	1	1	1	1	1	1	1
FearnleySubexp	4	7	11	13	17	21	25	29	33	37
FriedmannSubexp	4	9	13	15	19	23	27	31	35	39
${\sf RandomEdgeExpTest}$	1	2	2	2	2	2	2	2	2	2
RandomFacetSubexp	1	2	7	9	11	13	15	17	19	21
SwitchAllBestExp	4	5	8	11	12	13	15	17	18	19
SwitchAllBestSubExp	5	7	9	11	13	15	17	19	21	23
SwitchAllSubExp	3	5	7	9	10	11	12	13	14	15
SwitchAllExp	3	4	6	8	10	11	12	14	16	18
ZadehExp	-	6	10	14	18	21	25	28	32	35
ZadehSubexp	5	9	13	16	20	23	27	30	34	37

Parity Games with few colours

# colours	3	4	5	6	7	8
McNaughton	$O(m n^2)$	0(m n ³)	$O(m n^4)$	<i>O</i> (<i>m n</i> ⁵)	0(m n ⁶)	$O(m n^7)$
Browne & al.	$O(m n^3)$	<i>O</i> (<i>m n</i> ³)	$O(m n^4)$	$O(m n^4)$	<i>O</i> (<i>m n</i> ⁵)	<i>O</i> (<i>m n</i> ⁵)
Jur dziń ski	$O(m n^2)$	$O(m n^2)$	<i>O</i> (<i>m n</i> ³)	<i>O</i> (<i>m</i> n ³)	$O(m n^4)$	$O(m n^4)$
w.o. strategy / [GW15]	<i>O</i> (<i>m n</i>)		$O(m n^2)$		<i>O</i> (<i>m n</i> ³)	
Big Steps [S07]	<i>O</i> (<i>m n</i>)	$O(m n^{1\frac{1}{2}})$	$O(m n^2)$	$O(m n^{2\frac{1}{3}})$	$O(m n^{2\frac{3}{4}})$	$O(m n^{3\frac{1}{16}})$
[CHL15]	$O(n^{2.5})$	<i>O</i> (<i>n</i> ³)	$O(n^{3\frac{1}{3}})$	$O(n^{3\frac{3}{4}})$	$O(n^{4\frac{1}{16}})$	$O(n^{4\frac{9}{20}})$

summary

Parity Games

Further complexity resuts NP∩CoNP [NcNaughton 93] ● UP∩CoUP [Zwick and Paterson '96, Jurdziński 98] PLS [Beckmann and Moller 08] PPAD [Etessami and Yannakakis 10] • $n^{O(\sqrt{n})}$ [Jurdziński, Zwick, and Paterson 08] in LogCFL for bounded tree- and clique-width [Ganardi 15] fixed parameter tractable for bounded DAG-width

summary

Parity & Pay-Off Games

Strategy Improvement

- deterministic update [Puri 95, Vöge and Jurdziński 00]
- randomised updates [Ludwig 95, Björklund and Vorobyov 07]
- one-step optimal updates
- they are all expensive [Friedmann 09, FHZ 11a]
- symmetric strategy improvement

[STV 15]

[S 08]

summary

are simply **beautiful**!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @