
Parity Games

Sven Shewe

University of Liverpool

AVACS alumni presentation, September 29

th

, 2015

Beautiful games you annot stop playing

1

Parity Games with Few Colours

2

Parity Games with Many Colours

3

Parity Games with Few Colours

4

Parity Games with Few Colours

5

Parity Games with Few Colours

6

Parity Games with Bounded Treewidth

7

Strategy Improvement Algorithms

Beautiful games you annot stop playing

1

Parity Games with Few Colours

2

Parity Games with Many Colours

3

Parity Games with Few Colours

4

Parity Games with Few Colours

5

Parity Games with Few Colours

6

Parity Games with Bounded Treewidth

7

Strategy Improvement Algorithms

Beautiful games you annot stop playing

1

Parity Games with Few Colours

2

Parity Games with Many Colours

3

Parity Games with Few Colours

4

Parity Games with Few Colours

5

Parity Games with Few Colours

6

Parity Games with Bounded Treewidth

7

Strategy Improvement Algorithms

outline appliations overview

1 3 3

2 2 1 0

Parity Game P = hV

0

;V

1

;E ; �i

V

0

, and V

1

are disjoint �nite sets of game positions

E � V

0

[V

1

� V

0

[V

1

is a set of edges, and

� : V

0

[V

1

! N is a olouring funtion

Played by plaing a pebble on the arena

� on V

0

player 0 hooses a suessor, on V

1

player 1

) in�nite play, highest olour ourring in�nite often

even ; player 0 wins, odd ; player 1 wins

outline appliations overview

Appliations

(non)emptiness game for parity tree automata

aeptane game for parity tree automata

satis�ability heking for CTL*, ATL*, �-alulus, AT�C . . .

open synthesis for LTL, CTL*, ATL*, �-alulus, AT�C . . .

�-alulus model heking & extensions

(e.g., graded �-alulus, alternating-time �-alulus)

CTL* model heking (three olours), ATL* model

heking

module heking

outline appliations overview

Simple & Symmetri

Simple Redution [Zwik+Paterson 96℄

Parity Games

+

Mean Payo� Games

+

Disounted Payo� Games

+

Simple Stohasti Games

Symmetri Problem

Until reently, only a single deterministi symmetri algorithm

Fixed Point, [Zwik+Paterson 96℄

outline appliations overview

Obvious Fats and Open Questions

Obvious Fats

symmetri

) in lass \ o-lass

single �xed point of DPG an be guessed

) in UP \ o-UP [Jurdzi�nski 00℄

Less Obvious Fats

PLS [Bekmann and Moller 08℄

n

O(

p

n)

[Jurdzi�nski, Zwik, and Paterson 08℄

PPAD [Etessami and Yannakakis 10℄

outline appliations overview

Obvious Fats and Open Questions

Obvious Fats

symmetri

) in lass \ o-lass

single �xed point of DPG an be guessed

) in UP \ o-UP [Jurdzi�nski 00℄

Open Problems

P?

RP / ZPP?

pay-o� games: 2

O(

p

n)

?, 2

o(n)

?

outline appliations overview

Overview

Reahability Games

B�uhi Games

Parity Games

MNaughton few olours

Jurdzi�nski, Paterson, and Zwik

Browne & al. / Jurdzi�nski

their synthesis

bounded tree-width & Co

strategy improvement

B�uhi Games

Part I

Reahability & B�uhi Games

B�uhi Games

Solving Reahability Games

F

arena

Algorithm � for R = hV

0

;V

1

;E ; F i

start with the �nal states F

set W to -attrator(F)

set W to V rW

B�uhi Games

Solving Reahability Games

W

arena

Algorithm � for R = hV

0

;V

1

;E ; F i

start with the �nal states F

set W to -attrator(F)

set W to V rW

B�uhi Games

Solving Reahability Games

W

W

arena

Algorithm � for R = hV

0

;V

1

;E ; F i

start with the �nal states F

set W to -attrator(F)

set W to V rW

B�uhi Games

Traps and Paradises

 -Paradise

W

W

arena

Traps and Paradises

A -trap is a set of states where annot get out.

E.g.: W

Remark: W = W

1

 is usually no -trap.

A -paradise is a -trap suh that an win without

leaving it

Example: W

B�uhi Games

Solving B�uhi Games

F

arena

Algorithm � for B = hV

0

;V

1

;E ; F i

start with the �nal states F

set A to -attrator(F)

U = V r A is a -paradise (strategy: stay there)

V = -attrator(U) is a -paradise (go to U , stay)

W for B is W for B r V

solve B r V

B�uhi Games

Solving B�uhi Games

A

arena

Algorithm � for B = hV

0

;V

1

;E ; F i

start with the �nal states F

set A to -attrator(F)

U = V r A is a -paradise (strategy: stay there)

V = -attrator(U) is a -paradise (go to U , stay)

W for B is W for B r V

solve B r V

B�uhi Games

Solving B�uhi Games

 -Paradise

A

U

arena

Algorithm � for B = hV

0

;V

1

;E ; F i

start with the �nal states F

set A to -attrator(F)

U = V r A is a -paradise (strategy: stay there)

V = -attrator(U) is a -paradise (go to U , stay)

W for B is W for B r V

solve B r V

B�uhi Games

Solving B�uhi Games

V

 -Paradise

arena

Algorithm � for B = hV

0

;V

1

;E ; F i

start with the �nal states F

set A to -attrator(F)

U = V r A is a -paradise (strategy: stay there)

V = -attrator(U) is a -paradise (go to U , stay)

W for B is W for B r V

solve B r V

B�uhi Games

Solving B�uhi Games

V

F

worst ase: jV \ F j = 1

arena

Remark

`outdated' approah

O(n

2

) [Chaterjee and Henzinger 12℄

MNaughton big steps / JPZ ounting big steps / S

Part II

Parity Games

MNaughton big steps / JPZ ounting big steps / S

Overview

olours 3 4 5 6 7 8

MNaughton O(mn

2

) O(mn

3

) O(mn

4

) O(mn

5

) O(mn

6

) O(mn

7

)

Browne & al. O(mn

3

) O(mn

3

) O(mn

4

) O(mn

4

) O(mn

5

) O(mn

5

)

Jurdzi�nski O(mn

2

) O(mn

2

) O(mn

3

) O(mn

3

) O(mn

4

) O(mn

4

)

w.o. strategy / [GW15℄ O(mn) O(mn

2

) O(mn

3

)

Big Steps [S07℄ O(mn) O(mn

1

1

2

) O(mn

2

) O(mn

2

1

3

) O(mn

2

3

4

) O(mn

3

1

16

)

[CHL15℄ O(n

2:5

) O(n

3

) O(n

3

1

3

) O(n

3

3

4

) O(n

4

1

16

) O(n

4

9

20

)

MNaughton big steps / JPZ ounting big steps / S

1 3 3

2 2 1 0

Parity Game P = hV

0

;V

1

;E ; �i

V

0

, and V

1

are disjoint �nite sets of game positions

E � V

0

[V

1

� V

0

[V

1

is a set of edges, and

� : V

0

[V

1

! N is a olouring funtion

Played by plaing a pebble on the arena

� on V

0

player 0 hooses a suessor, on V

1

player 1

) in�nite play, highest olour ourring in�nite often

even ; player 0 wins, odd ; player 1 wins

MNaughton big steps / JPZ ounting big steps / S

MNaughton's Algorithm

�

�1

()

arena

MNaughton's Algorithm � for P = hV

0

;V

1

;E ; �i

set to the maximal olour, � to modulo 2, and � to 1� �

set A to �-attrator

�

�

�1

()

�

set (U

0

;U

1

) to MNaughton(P r A)

set W

�

to �-attrator(U

�

), and set W

�

to ;

set (U

0

;U

1

) to MNaughton(P rW

�

)

return (W

0

_

[U

0

;W

1

_

[U

1

)

MNaughton big steps / JPZ ounting big steps / S

MNaughton's Algorithm

A

arena

MNaughton's Algorithm � for P = hV

0

;V

1

;E ; �i

set to the maximal olour, � to modulo 2, and � to 1� �

set A to �-attrator

�

�

�1

()

�

set (U

0

;U

1

) to MNaughton(P r A)

set W

�

to �-attrator(U

�

), and set W

�

to ;

set (U

0

;U

1

) to MNaughton(P rW

�

)

return (W

0

_

[U

0

;W

1

_

[U

1

)

MNaughton big steps / JPZ ounting big steps / S

MNaughton's Algorithm

�-Paradise

A

U

�

U

�

arena

MNaughton's Algorithm � for P = hV

0

;V

1

;E ; �i

set to the maximal olour, � to modulo 2, and � to 1� �

set A to �-attrator

�

�

�1

()

�

set (U

0

;U

1

) to MNaughton(P r A)

set W

�

to �-attrator(U

�

), and set W

�

to ;

set (U

0

;U

1

) to MNaughton(P rW

�

)

return (W

0

_

[U

0

;W

1

_

[U

1

)

MNaughton big steps / JPZ ounting big steps / S

MNaughton's Algorithm

W

�

�-Paradise

arena

MNaughton's Algorithm � for P = hV

0

;V

1

;E ; �i

set to the maximal olour, � to modulo 2, and � to 1� �

set A to �-attrator

�

�

�1

()

�

set (U

0

;U

1

) to MNaughton(P r A)

set W

�

to �-attrator(U

�

), and set W

�

to ;

set (U

0

;U

1

) to MNaughton(P rW

�

)

return (W

0

_

[U

0

;W

1

_

[U

1

)

MNaughton big steps / JPZ ounting big steps / S

MNaughton's Algorithm

W

�

�

�1

()

worst ase: jW

�

\ �

�1

()j = 1

arena

MNaughton's Algorithm � for P = hV

0

;V

1

;E ; �i

set to the maximal olour, � to modulo 2, and � to 1� �

set A to �-attrator

�

�

�1

()

�

set (U

0

;U

1

) to MNaughton(P r A)

set W

�

to �-attrator(U

�

), and set W

�

to ;

set (U

0

;U

1

) to MNaughton(P rW

�

)

return (W

0

_

[U

0

;W

1

_

[U

1

)

MNaughton big steps / JPZ ounting big steps / S

MNaughton's Algorithm�Weakness

W

�

�

�1

()

) j�

�1

()j iterations � O(mn

�1

)

Small Steps) High Complexity

arena

MNaughton's Algorithm � for P = hV

0

;V

1

;E ; �i

set to the maximal olour, � to modulo 2, and � to 1� �

set A to �-attrator

�

�

�1

()

�

set (U

0

;U

1

) to MNaughton(P r A)

set W

�

to �-attrator(U

�

), and set W

�

to ;

set (U

0

;U

1

) to MNaughton(P rW

�

)

return (W

0

_

[U

0

;W

1

_

[U

1

)

MNaughton big steps / JPZ ounting big steps / S

�-Paradise

�-Paradise

arena

De�nition � �-Paradise

Subset P

�

of the positions, s.t. player � has a strategy to

stay in P

�

(�-trap)

that is winning for all states in P

�

.

�-Paradises are losed under

union, and

�-attrator.

MNaughton big steps / JPZ ounting big steps / S

�/�-Paradise

P

�

�

arena

De�nition � �/�-Paradise

Paradise P

�

�

that ontains all �-paradises of size � �.

�/�-Paradises are losed under

union with any �-paradise, and

�-attrator.

MNaughton big steps / JPZ ounting big steps / S

Big-Step Algorithm

P

�

�

arena

BigStep Algorithm � for P = hV

0

;V

1

;E ; �i

set to the maximal olor, � to modulo 2, and � to 1� �

ompute �/�-paradise P

�

�

, and set P

�

�

to �-attrator(P

�

�

)

set P

0

to P r P

�

�

set A to �-attrator

�

�

�1

()

�

set (U

0

;U

1

) to BigStep(P

0

r A)

set W

�

to �-attrator(U

�

) [P

�

�

, and set W

�

to ;

set (U

0

;U

1

) to BigStep(P rW

�

), return (W

0

_

[U

0

;W

1

_

[U

1

)

MNaughton big steps / JPZ ounting big steps / S

Big-Step Algorithm

P

�

�

arena

BigStep Algorithm � for P = hV

0

;V

1

;E ; �i

set to the maximal olor, � to modulo 2, and � to 1� �

ompute �/�-paradise P

�

�

, and set P

�

�

to �-attrator(P

�

�

)

set P

0

to P r P

�

�

set A to �-attrator

�

�

�1

()

�

set (U

0

;U

1

) to BigStep(P

0

r A)

set W

�

to �-attrator(U

�

) [P

�

�

, and set W

�

to ;

set (U

0

;U

1

) to BigStep(P rW

�

), return (W

0

_

[U

0

;W

1

_

[U

1

)

MNaughton big steps / JPZ ounting big steps / S

Big-Step Algorithm

P

�

�

�

�1

()

arena

BigStep Algorithm � for P = hV

0

;V

1

;E ; �i

set to the maximal olor, � to modulo 2, and � to 1� �

ompute �/�-paradise P

�

�

, and set P

�

�

to �-attrator(P

�

�

)

set P

0

to P r P

�

�

set A to �-attrator

�

�

�1

()

�

set (U

0

;U

1

) to BigStep(P

0

r A)

set W

�

to �-attrator(U

�

) [P

�

�

, and set W

�

to ;

set (U

0

;U

1

) to BigStep(P rW

�

), return (W

0

_

[U

0

;W

1

_

[U

1

)

MNaughton big steps / JPZ ounting big steps / S

Big-Step Algorithm

P

�

�

A

arena

BigStep Algorithm � for P = hV

0

;V

1

;E ; �i

set to the maximal olor, � to modulo 2, and � to 1� �

ompute �/�-paradise P

�

�

, and set P

�

�

to �-attrator(P

�

�

)

set P

0

to P r P

�

�

set A to �-attrator

�

�

�1

()

�

set (U

0

;U

1

) to BigStep(P

0

r A)

set W

�

to �-attrator(U

�

) [P

�

�

, and set W

�

to ;

set (U

0

;U

1

) to BigStep(P rW

�

), return (W

0

_

[U

0

;W

1

_

[U

1

)

MNaughton big steps / JPZ ounting big steps / S

Big-Step Algorithm

P

�

�

A

U

�

U

�

arena

BigStep Algorithm � for P = hV

0

;V

1

;E ; �i

set to the maximal olor, � to modulo 2, and � to 1� �

ompute �/�-paradise P

�

�

, and set P

�

�

to �-attrator(P

�

�

)

set P

0

to P r P

�

�

set A to �-attrator

�

�

�1

()

�

set (U

0

;U

1

) to BigStep(P

0

r A)

set W

�

to �-attrator(U

�

) [P

�

�

, and set W

�

to ;

set (U

0

;U

1

) to BigStep(P rW

�

), return (W

0

_

[U

0

;W

1

_

[U

1

)

MNaughton big steps / JPZ ounting big steps / S

Big-Step Algorithm

P

�

�

W

�

W

�

6= ;) jW

�

[P

�

�

j > �

arena

BigStep Algorithm � for P = hV

0

;V

1

;E ; �i

set to the maximal olor, � to modulo 2, and � to 1� �

ompute �/�-paradise P

�

�

, and set P

�

�

to �-attrator(P

�

�

)

set P

0

to P r P

�

�

set A to �-attrator

�

�

�1

()

�

set (U

0

;U

1

) to BigStep(P

0

r A)

set W

�

to �-attrator(U

�

) [P

�

�

, and set W

�

to ;

set (U

0

;U

1

) to BigStep(P rW

�

), return (W

0

_

[U

0

;W

1

_

[U

1

)

MNaughton big steps / JPZ ounting big steps / S

Jurdzi�nski, Paterson, and Zwik

invented this approahe

used it to establish a deterministi n

O(

p

n)

bound

Brute Fore (roughly)

try all sets of size up to � 2 O(

p

n)

there are some n

O(

p

n)

many

eah level has up to O(

p

n) many alls

all tree of size n

O(

p

n)

drawbak: is, in fat, usually tiny ompared to

p

n

MNaughton big steps / JPZ ounting big steps / S

Browne & al., Jurdzi�nski

1 1 3

2 4 5 0

If you follow a winning strategy of even on W

0

, then . . .

player odd annot fore > j�

�1

()j ourenes of any odd

olour without a higher even olour in between

player even an fore > j�

�1

()j ourenes of some (not a

partiular!) even olour without a higher odd olour in

between

MNaughton big steps / JPZ ounting big steps / S

Browne & al., Jurdzi�nski

1 1 3

2 4 5 0

Rules: Jurdzi�nski: bakwards, order on ounter vetor

we start at some initial positions with ounters for, say, the

odd olours only, inially set to 0

eah player hooses how to ontinue on her verties

if we pass an odd olour , the ounter is inreased

if we pass an even olour , all ounters for smaller olours

are re-set

player odd wins if a ounter exeeds j�

�1

()j

MNaughton big steps / JPZ ounting big steps / S

Big Steps � What if is Small?

� the ommon ase �

Stop ounting at � (simple!)

d0:5e many ounters

their sum bounded by �

� (

� + d0:5e

�

) � �

d0:5e

values

overs all �-paradises P

�

with jP

�

j � �

Complexity: O

�

 m �

d0:5e

�

MNaughton big steps / JPZ ounting big steps / S

Big-Step Algorithm

P

�

�

arena

MNaughton big steps / JPZ ounting big steps / S

Big-Step Algorithm

P

�

�

arena

MNaughton big steps / JPZ ounting big steps / S

Big-Step Algorithm

P

�

�

�

�1

()

arena

MNaughton big steps / JPZ ounting big steps / S

Big-Step Algorithm

P

�

�

A

arena

MNaughton big steps / JPZ ounting big steps / S

Big-Step Algorithm

P

�

�

A

U

�

U

�

arena

MNaughton big steps / JPZ ounting big steps / S

Big-Step Algorithm

P

�

�

W

�

W

�

6= ;) jW

�

[P

�

�

j > �

arena

MNaughton big steps / JPZ ounting big steps / S

Solving Parity Games in Big Steps � Complexity

P

�

�

W

�

arena

number of olours 3 4 5 6 7 8

paradise onstrution - O(mn) O(mn

1

1

2

) O(mn

2

) O(mn

2

1

3

) O(mn

2

3

4

)

hosen parameter �

(n) - n

1

2

n

1

2

n

2

3

n

7

12

n

11

16

number of iterations

n

�

(n)

- n

1

2

n

1

2

n

1

3

n

5

12

n

5

16

solving omplexity O(mn) O(mn

1

1

2

) O(mn

2

) O(mn

2

1

3

) O(mn

2

3

4

) O(mn

3

1

16

)

MNaughton big steps / JPZ ounting big steps / S

State of the Art

olours 3 4 5 6 7 8

MNaughton O(mn

2

) O(mn

3

) O(mn

4

) O(mn

5

) O(mn

6

) O(mn

7

)

Browne & al. O(mn

3

) O(mn

3

) O(mn

4

) O(mn

4

) O(mn

5

) O(mn

5

)

Jurdzi�nski O(mn

2

) O(mn

2

) O(mn

3

) O(mn

3

) O(mn

4

) O(mn

4

)

w.o. strategy / [GW15℄ O(mn) O(mn

2

) O(mn

3

)

Big Steps [S07℄ O(mn) O(mn

1

1

2

) O(mn

2

) O(mn

2

1

3

) O(mn

2

3

4

) O(mn

3

1

16

)

[CHL15℄ O(n

2:5

) O(n

3

) O(n

3

1

3

) O(n

3

3

4

) O(n

4

1

16

) O(n

4

9

20

)

Signi�antly improved omplexity bound

from O

�

 m (

n

b0:5

)

b0:5

�

to O

�

m

�

� n

�

()

�

for

() =

1

3

+

1

2

�

1

3

�

1

d

2

eb

2

if is even, and

() =

1

3

+

1

2

�

1

d

2

eb

2

if is odd

Seond improvement that redues the growth in # olours

Part III

Bounded Treewidth & Co

Other Parameter

Parity games are in P for other parameters than # olours

tree-width [Obdrz�alek 03℄

DAG-width [Berwanger, Dawar, Hunter, and Kreutzer 06℄

lique-width [Obdrz�alek 07℄

Hope

Can this be a foundation for a tratable algorithm?

A `Positive' Result

Fearnley and Shewe 2013

NC

2

for bounded tree-width k

+ improved bound O

�

n

2(k+1)

2

�

; O

�

(n k

2

k!(+ 1)

3k+1

�

+ �xed parameter tratable for bounded DAG-width

Improved by Ganardi 2015

LogCFL for bounded tree-width

LogCFL for bounded leaque-width

LogDCFL for tree-width 2

A `Positive' Result

Fearnley and Shewe 2013

NC

2

for bounded tree-width k

+ improved bound O

�

n

2(k+1)

2

�

; O

�

(n k

2

k!(+ 1)

3k+1

�

+ �xed parameter tratable for bounded DAG-width

Improved by Ganardi 2015

LogCFL for bounded tree-width

LogCFL for bounded leaque-width

LogDCFL for tree-width 2

CSI why symmetry? why not? SSI

Part IV

Strategy Improvement

CSI why symmetry? why not? SSI

Classi Strategy Improvement

�x strategy

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

CSI why symmetry? why not? SSI

Classi Strategy Improvement

�nd best response and evaluate

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:4 0:55

0:4

0:4 0:3

0:55

tratable

CSI why symmetry? why not? SSI

Classi Strategy Improvement

apply loal improvements

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:4 0:55

0:4

0:4 0:3

0:55

CSI why symmetry? why not? SSI

Classi Strategy Improvement

�nd best response & evaluate

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:9 0:55

0:4

0:5 0:375

0:55

CSI why symmetry? why not? SSI

Classi Strategy Improvement

no loal improvent: done

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:9 0:55

0:4

0:5 0:375

0:55

CSI why symmetry? why not? SSI

CSI � failed hope

was long hoped to be tratable

many update poliies

8 exponential lower bounds [Friedmann 11,. . . ℄

� use stati update poliy

9 PSPACE powerful [Fearnley+Savani 15℄

CSI why symmetry? why not? SSI

SYMMETRYßT9MMYS

Symmetry and Complexity [Jurdzi�nski 98℄

1

guess valuation

2

verify

) one value: UP

symmetry: UP\CoUP

Iterated Fixed Point [Emerson+Lei 86℄ parity games

similar treatment

best performing algorithm

Optimal Strategy Improvement [Shewe 08℄

parity games, MPG mean partitions

some symmetry

fab performane

CSI why symmetry? why not? SSI

Why not?

Naive symmetri strategy improvement

Question: Why has SSI not been thoroughly studied?

Answer: Anne Condon has proved it wrong [Condon 93℄

1

Cunurrent Swith

2

Alternating Best Response

CSI why symmetry? why not? SSI

Conurrent Swith

starting strategies

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

CSI why symmetry? why not? SSI

Conurrent Swith

evaluate

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:9 1

1

0:5 0:375

1

CSI why symmetry? why not? SSI

Conurrent Swith

update strategies

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:9 1

1

0:5 0:375

1

CSI why symmetry? why not? SSI

Conurrent Swith

update evaluation

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:4 0:55

0:4

0:5 0:375

0:55

CSI why symmetry? why not? SSI

Conurrent Swith

update strategies

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:4 0:55

0:4

0:5 0:375

0:55

CSI why symmetry? why not? SSI

Conurrent Swith

update evaluation

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:9 0:55

0:4

0:9 0:675

0:55

CSI why symmetry? why not? SSI

Conurrent Swith

update strategy

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:9 0:55

0:4

0:9 0:675

0:55

CSI why symmetry? why not? SSI

Conurrent Swith

update evaluation

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:9 0:375

0:4

0:5 0:375

0:55

CSI why symmetry? why not? SSI

Conurrent Swith

update strategy (yle)

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:9 0:375

0:4

0:5 0:375

0:55

CSI why symmetry? why not? SSI

Symmetri Strategy Improvement

starting strategies

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

CSI why symmetry? why not? SSI

Symmetri Strategy Improvement

evaluate � best response

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

CSI why symmetry? why not? SSI

Symmetri Strategy Improvement

best response & improvement

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

CSI why symmetry? why not? SSI

Symmetri Strategy Improvement

update (done)

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:9 0:55

0:4

0:5 0:375

0:55

CSI why symmetry? why not? SSI

Symmetri Strategy Improvement

Can SSI help overome problems of CSI?

Question: How about single player examples? [Fearnley 10℄

Answer: Easy (but no surprise there)

Question: How about Friedmann's traps? [Friedmann 11,. . . ℄

Answer: Yes but this doesn't imply there are no traps

Question: Less iterations on random games?

Answer: Yes but probably not half

Question: Is SSI polynomial?

Answer: Look at the weather! Isn't it lovely?

CSI why symmetry? why not? SSI

Friedmann's Traps

Swith Rule 1 2 3 4 5 6 7 8 9 10

Cunningham 2 6 9 12 15 18 21 24 27 30

CunninghamSubexp 1 1 1 1 1 1 1 1 1 1

FearnleySubexp 4 7 11 13 17 21 25 29 33 37

FriedmannSubexp 4 9 13 15 19 23 27 31 35 39

RandomEdgeExpTest 1 2 2 2 2 2 2 2 2 2

RandomFaetSubexp 1 2 7 9 11 13 15 17 19 21

SwithAllBestExp 4 5 8 11 12 13 15 17 18 19

SwithAllBestSubExp 5 7 9 11 13 15 17 19 21 23

SwithAllSubExp 3 5 7 9 10 11 12 13 14 15

SwithAllExp 3 4 6 8 10 11 12 14 16 18

ZadehExp - 6 10 14 18 21 25 28 32 35

ZadehSubexp 5 9 13 16 20 23 27 30 34 37

summary

Parity Games

with few olours

olours 3 4 5 6 7 8

MNaughton O(mn

2

) O(mn

3

) O(mn

4

) O(mn

5

) O(mn

6

) O(mn

7

)

Browne & al. O(mn

3

) O(mn

3

) O(mn

4

) O(mn

4

) O(mn

5

) O(mn

5

)

Jurdzi�nski O(mn

2

) O(mn

2

) O(mn

3

) O(mn

3

) O(mn

4

) O(mn

4

)

w.o. strategy / [GW15℄ O(mn) O(mn

2

) O(mn

3

)

Big Steps [S07℄ O(mn) O(mn

1

1

2

) O(mn

2

) O(mn

2

1

3

) O(mn

2

3

4

) O(mn

3

1

16

)

[CHL15℄ O(n

2:5

) O(n

3

) O(n

3

1

3

) O(n

3

3

4

) O(n

4

1

16

) O(n

4

9

20

)

summary

Parity Games

Further omplexity resuts

NP\CoNP [NNaughton 93℄

UP\CoUP [Zwik and Paterson '96, Jurdzi�nski 98℄

PLS [Bekmann and Moller 08℄

PPAD [Etessami and Yannakakis 10℄

n

O(

p

n)

[Jurdzi�nski, Zwik, and Paterson 08℄

in LogCFL for bounded tree- and lique-width [Ganardi 15℄

�xed parameter tratable for bounded DAG-width

summary

Parity & Pay-O� Games

Strategy Improvement

deterministi update [Puri 95, V�oge and Jurdzi�nski 00℄

randomised updates [Ludwig 95, Bj�orklund and Vorobyov 07℄

one-step optimal updates [S 08℄

they are all expensive [Friedmann 09, FHZ 11a℄

symmetri strategy improvement [STV 15℄

summary

Parity Games

. . . are simply beautiful!

	motivation
	outline
	applications
	overview

	Reachability & Büchi Games
	Büchi Games

	Parity Games
	McNaughton
	big steps / JPZ
	counting
	big steps / S

	Bounded Treewidth & Co
	Strategy Improvement
	CSI
	why symmetry?
	why not?
	SSI

	summary
	summary

