
Parity Games

Sven Shewe

University of Liverpool

AVACS alumni presentation, September 29

th

, 2015



Beautiful games you annot stop playing

1

Parity Games with Few Colours

2

Parity Games with Many Colours

3

Parity Games with Few Colours

4

Parity Games with Few Colours

5

Parity Games with Few Colours

6

Parity Games with Bounded Treewidth

7

Strategy Improvement Algorithms



Beautiful games you annot stop playing

1

Parity Games with Few Colours

2

Parity Games with Many Colours

3

Parity Games with Few Colours

4

Parity Games with Few Colours

5

Parity Games with Few Colours

6

Parity Games with Bounded Treewidth

7

Strategy Improvement Algorithms



Beautiful games you annot stop playing

1

Parity Games with Few Colours

2

Parity Games with Many Colours

3

Parity Games with Few Colours

4

Parity Games with Few Colours

5

Parity Games with Few Colours

6

Parity Games with Bounded Treewidth

7

Strategy Improvement Algorithms



outline appliations overview

1 3 3

2 2 1 0

Parity Game P = hV

0

;V

1

;E ; �i

V

0

, and V

1

are disjoint �nite sets of game positions

E � V

0

[ V

1

� V

0

[ V

1

is a set of edges, and

� : V

0

[ V

1

! N is a olouring funtion

Played by plaing a pebble on the arena

� on V

0

player 0 hooses a suessor, on V

1

player 1

) in�nite play, highest olour ourring in�nite often

even ; player 0 wins, odd ; player 1 wins



outline appliations overview

Appliations

(non)emptiness game for parity tree automata

aeptane game for parity tree automata

satis�ability heking for CTL*, ATL*, �-alulus, AT�C . . .

open synthesis for LTL, CTL*, ATL*, �-alulus, AT�C . . .

�-alulus model heking & extensions

(e.g., graded �-alulus, alternating-time �-alulus)

CTL* model heking (three olours), ATL* model

heking

module heking



outline appliations overview

Simple & Symmetri

Simple Redution [Zwik+Paterson 96℄

Parity Games

+

Mean Payo� Games

+

Disounted Payo� Games

+

Simple Stohasti Games

Symmetri Problem

Until reently, only a single deterministi symmetri algorithm

Fixed Point, [Zwik+Paterson 96℄



outline appliations overview

Obvious Fats and Open Questions

Obvious Fats

symmetri

) in lass \ o-lass

single �xed point of DPG an be guessed

) in UP \ o-UP [Jurdzi�nski 00℄

Less Obvious Fats

PLS [Bekmann and Moller 08℄

n

O(

p

n)

[Jurdzi�nski, Zwik, and Paterson 08℄

PPAD [Etessami and Yannakakis 10℄



outline appliations overview

Obvious Fats and Open Questions

Obvious Fats

symmetri

) in lass \ o-lass

single �xed point of DPG an be guessed

) in UP \ o-UP [Jurdzi�nski 00℄

Open Problems

P?

RP / ZPP?

pay-o� games: 2

O(

p

n)

?, 2

o(n)

?



outline appliations overview

Overview

Reahability Games

B�uhi Games

Parity Games

MNaughton few olours

Jurdzi�nski, Paterson, and Zwik

Browne & al. / Jurdzi�nski

their synthesis

bounded tree-width & Co

strategy improvement



B�uhi Games

Part I

Reahability & B�uhi Games



B�uhi Games

Solving Reahability Games

F

arena

Algorithm � for R = hV

0

;V

1

;E ; F i

start with the �nal states F

set W to  -attrator(F )

set W to V rW
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B�uhi Games

Solving Reahability Games

W

W

arena

Algorithm � for R = hV

0

;V

1

;E ; F i

start with the �nal states F

set W to  -attrator(F )

set W to V rW



B�uhi Games

Traps and Paradises

 -Paradise

W

W

arena

Traps and Paradises

A  -trap is a set of states where  annot get out.

E.g.: W

Remark: W = W

1

 is usually no  -trap.

A  -paradise is a  -trap suh that  an win without

leaving it

Example: W



B�uhi Games

Solving B�uhi Games

F

arena

Algorithm � for B = hV

0

;V

1

;E ; F i

start with the �nal states F

set A to  -attrator(F )

U = V r A is a  -paradise (strategy: stay there)

V =  -attrator(U ) is a  -paradise (go to U , stay)

W for B is W for B r V

solve B r V



B�uhi Games

Solving B�uhi Games

A

arena

Algorithm � for B = hV

0

;V

1

;E ; F i

start with the �nal states F

set A to  -attrator(F )

U = V r A is a  -paradise (strategy: stay there)

V =  -attrator(U ) is a  -paradise (go to U , stay)

W for B is W for B r V

solve B r V



B�uhi Games

Solving B�uhi Games

 -Paradise

A

U

arena

Algorithm � for B = hV

0

;V

1

;E ; F i

start with the �nal states F

set A to  -attrator(F )

U = V r A is a  -paradise (strategy: stay there)

V =  -attrator(U ) is a  -paradise (go to U , stay)

W for B is W for B r V

solve B r V



B�uhi Games

Solving B�uhi Games

V

 -Paradise

arena

Algorithm � for B = hV

0

;V

1

;E ; F i

start with the �nal states F

set A to  -attrator(F )

U = V r A is a  -paradise (strategy: stay there)

V =  -attrator(U ) is a  -paradise (go to U , stay)

W for B is W for B r V

solve B r V



B�uhi Games

Solving B�uhi Games

V

F

worst ase: jV \ F j = 1

arena

Remark

`outdated' approah

O(n

2

) [Chaterjee and Henzinger 12℄
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Part II

Parity Games
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Overview
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1 3 3

2 2 1 0

Parity Game P = hV

0

;V
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;E ; �i

V

0

, and V
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are disjoint �nite sets of game positions

E � V

0

[ V

1

� V

0

[ V
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is a set of edges, and

� : V

0

[ V

1

! N is a olouring funtion

Played by plaing a pebble on the arena

� on V

0

player 0 hooses a suessor, on V

1

player 1

) in�nite play, highest olour ourring in�nite often

even ; player 0 wins, odd ; player 1 wins
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MNaughton's Algorithm

�
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()

arena

MNaughton's Algorithm � for P = hV
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MNaughton's Algorithm
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MNaughton's Algorithm�Weakness
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�-Paradise

�-Paradise

arena

De�nition � �-Paradise

Subset P

�

of the positions, s.t. player � has a strategy to

stay in P

�

(�-trap)

that is winning for all states in P

�

.

�-Paradises are losed under

union, and

�-attrator.
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�/�-Paradise

P

�

�

arena

De�nition � �/�-Paradise
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that ontains all �-paradises of size � �.

�/�-Paradises are losed under

union with any �-paradise, and

�-attrator.
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Big-Step Algorithm
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Jurdzi�nski, Paterson, and Zwik

invented this approahe

used it to establish a deterministi n

O(

p

n)

bound

Brute Fore (roughly)

try all sets of size up to � 2 O(

p

n)

there are some n

O(

p

n)

many

eah level has up to O(

p

n) many alls

all tree of size n

O(

p

n)

drawbak:  is, in fat, usually tiny ompared to

p

n
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Browne & al., Jurdzi�nski

1 1 3

2 4 5 0

If you follow a winning strategy of even on W

0

, then . . .

player odd annot fore > j�

�1

()j ourenes of any odd

olour  without a higher even olour in between

player even an fore > j�

�1

()j ourenes of some (not a

partiular!) even olour  without a higher odd olour in

between
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Browne & al., Jurdzi�nski

1 1 3

2 4 5 0

Rules: Jurdzi�nski: bakwards, order on ounter vetor

we start at some initial positions with ounters for, say, the

odd olours only, inially set to 0

eah player hooses how to ontinue on her verties

if we pass an odd olour  , the ounter is inreased

if we pass an even olour  , all ounters for smaller olours

are re-set

player odd wins if a ounter exeeds j�

�1

()j
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Big Steps � What if  is Small?

� the ommon ase �

Stop ounting at � (simple!)

d0:5e many ounters

their sum bounded by �

� (

� + d0:5e

�

) � �

d0:5e

values

overs all �-paradises P

�

with jP

�

j � �

Complexity: O

�

 m �

d0:5e

�
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Big-Step Algorithm
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Solving Parity Games in Big Steps � Complexity
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State of the Art
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Part III

Bounded Treewidth & Co



Other Parameter

Parity games are in P for other parameters than # olours

tree-width [Obdrz�alek 03℄

DAG-width [Berwanger, Dawar, Hunter, and Kreutzer 06℄

lique-width [Obdrz�alek 07℄

Hope

Can this be a foundation for a tratable algorithm?



A `Positive' Result

Fearnley and Shewe 2013
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CSI why symmetry? why not? SSI

Part IV

Strategy Improvement



CSI why symmetry? why not? SSI

Classi Strategy Improvement

�x strategy
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: random
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CSI why symmetry? why not? SSI

Classi Strategy Improvement

�nd best response and evaluate
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: random
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CSI why symmetry? why not? SSI

Classi Strategy Improvement

apply loal improvements
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CSI why symmetry? why not? SSI

Classi Strategy Improvement

�nd best response & evaluate
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CSI why symmetry? why not? SSI

Classi Strategy Improvement

no loal improvent: done
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CSI why symmetry? why not? SSI

CSI � failed hope

was long hoped to be tratable

many update poliies

8 exponential lower bounds [Friedmann 11,. . . ℄

� use stati update poliy

9 PSPACE powerful [Fearnley+Savani 15℄



CSI why symmetry? why not? SSI

SYMMETRYßT9MMYS

Symmetry and Complexity [Jurdzi�nski 98℄

1

guess valuation

2

verify

) one value: UP

symmetry: UP\CoUP

Iterated Fixed Point [Emerson+Lei 86℄ parity games

similar treatment

best performing algorithm

Optimal Strategy Improvement [Shewe 08℄

parity games, MPG mean partitions

some symmetry

fab performane



CSI why symmetry? why not? SSI

Why not?

Naive symmetri strategy improvement

Question: Why has SSI not been thoroughly studied?

Answer: Anne Condon has proved it wrong [Condon 93℄

1

Cunurrent Swith

2

Alternating Best Response



CSI why symmetry? why not? SSI

Conurrent Swith

starting strategies
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: random
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CSI why symmetry? why not? SSI

Conurrent Swith

evaluate
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: min

: random
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CSI why symmetry? why not? SSI

Conurrent Swith

update strategies
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: min
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CSI why symmetry? why not? SSI

Conurrent Swith

update evaluation

: max

: min
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Conurrent Swith

update strategies
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Conurrent Swith

update evaluation
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CSI why symmetry? why not? SSI

Conurrent Swith

update strategy
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CSI why symmetry? why not? SSI

Conurrent Swith

update evaluation
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CSI why symmetry? why not? SSI

Conurrent Swith

update strategy (yle)

: max

: min
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CSI why symmetry? why not? SSI

Symmetri Strategy Improvement

starting strategies

: max

: min

: random
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CSI why symmetry? why not? SSI

Symmetri Strategy Improvement

evaluate � best response

: max

: min

: random
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CSI why symmetry? why not? SSI

Symmetri Strategy Improvement

best response & improvement

: max

: min

: random
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CSI why symmetry? why not? SSI

Symmetri Strategy Improvement

update (done)

: max

: min

: random
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CSI why symmetry? why not? SSI

Symmetri Strategy Improvement

Can SSI help overome problems of CSI?

Question: How about single player examples? [Fearnley 10℄

Answer: Easy (but no surprise there)

Question: How about Friedmann's traps? [Friedmann 11,. . . ℄

Answer: Yes but this doesn't imply there are no traps

Question: Less iterations on random games?

Answer: Yes but probably not half

Question: Is SSI polynomial?

Answer: Look at the weather! Isn't it lovely?



CSI why symmetry? why not? SSI

Friedmann's Traps

Swith Rule 1 2 3 4 5 6 7 8 9 10

Cunningham 2 6 9 12 15 18 21 24 27 30

CunninghamSubexp 1 1 1 1 1 1 1 1 1 1

FearnleySubexp 4 7 11 13 17 21 25 29 33 37

FriedmannSubexp 4 9 13 15 19 23 27 31 35 39

RandomEdgeExpTest 1 2 2 2 2 2 2 2 2 2

RandomFaetSubexp 1 2 7 9 11 13 15 17 19 21

SwithAllBestExp 4 5 8 11 12 13 15 17 18 19

SwithAllBestSubExp 5 7 9 11 13 15 17 19 21 23

SwithAllSubExp 3 5 7 9 10 11 12 13 14 15

SwithAllExp 3 4 6 8 10 11 12 14 16 18

ZadehExp - 6 10 14 18 21 25 28 32 35

ZadehSubexp 5 9 13 16 20 23 27 30 34 37



summary

Parity Games

with few olours

# olours 3 4 5 6 7 8

MNaughton O(mn

2

) O(mn
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) O(mn
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1

1

2

) O(mn

2
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)

[CHL15℄ O(n
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3
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3

3
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) O(n

4

1
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) O(n

4
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summary

Parity Games

Further omplexity resuts

NP\CoNP [NNaughton 93℄

UP\CoUP [Zwik and Paterson '96, Jurdzi�nski 98℄

PLS [Bekmann and Moller 08℄

PPAD [Etessami and Yannakakis 10℄

n

O(

p

n)

[Jurdzi�nski, Zwik, and Paterson 08℄

in LogCFL for bounded tree- and lique-width [Ganardi 15℄

�xed parameter tratable for bounded DAG-width



summary

Parity & Pay-O� Games

Strategy Improvement

deterministi update [Puri 95, V�oge and Jurdzi�nski 00℄

randomised updates [Ludwig 95, Bj�orklund and Vorobyov 07℄

one-step optimal updates [S 08℄

they are all expensive [Friedmann 09, FHZ 11a℄

symmetri strategy improvement [STV 15℄



summary

Parity Games

. . . are simply beautiful!
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