Proof Spaces

Andreas Podelski

joint work with:

Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Jochen Hoenicke, Azadeh Farzan, Zachary Kincaid, Markus Lindenmann, Betim Musa, Christian Schilling, Alexander Nutz, Stefan Wissert, Evren Ermis

proof spaces

- new paradigm for automatic verification
- automata
- Marc Segelken: ω-Cegar [CAV 2007]
- verification for networked traffic control systems

Ultimate Automizer

Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Jochen Hoenicke, Azadeh Farzan, Zachary Kincaid, Markus Lindenmann, Betim Musa, Christian Schilling, Alexander Nutz, Stefan Wissert, Evren Ermis

- Refinement of Trace Abstraction. <u>SAS 2009</u>
- Nested interpolants. POPL 2010
- Interpolant Automata. <u>ATVA 2012</u>
- Ultimate Automizer with SMTInterpol (Competition Contribution). <u>TACAS 2013</u>
- Automata as Proofs. VMCAI 2013
- Inductive data flow graphs. <u>POPL 2013</u>
- Software Model Checking for People Who Love Automata. <u>CAV 2013</u>
- Ultimate Automizer with Unsatisfiable Cores (Competition Contribution). TACAS 2014
- Termination Analysis by Learning Terminating Programs. <u>CAV 2014</u>
- Proofs that count. POPL 2014:
- Ultimate Automizer with Array Interpolation (Competition Contribution). TACAS 2015
- Automated Program Verification. LATA 2015
- Fairness Modulo Theory: A New Approach to LTL Software Model Checking. <u>CAV 2015</u>
- Proof Spaces for Unbounded Parallelism. POPL 2015

invited talk: ETAPS 2012, ATVA 2012, VMCAI 2013, CAV 2013, LATA 2015

proof spaces

- new paradigm for automatic verification
- automata
- Marc Segelken: ω-Cegar [CAV 2007]
- verification for networked traffic control systems

The AVACS Vision

To Cover the Model- and Requirement Space of Complex Safety Critical Systems

with Automatic Verification Methods

Giving Mathematical Evidence of Compliance of Models

To Dependability, Coordination, Control and Real-Time Requirements

Automating Verification of Cooperation, Control, and Design in Traffic Applications *

Werner Damm^{1,2}, Alfred Mikschl¹, Jens Oehlerking¹, Ernst-Rüdiger Olderog¹, Jun Pang¹, André Platzer¹, Marc Segelken², and Boris Wirtz¹

Fig. 4. Radio-based train control

Fig. 5. Snapshot of dynamic calculations

holistic verification methodology

dedicated methods for:

- cooperation layer
- control layer
- design layer

model checking for discrete hybrid systems - Lin AlGs - ω-Cegar

Fig. 17. The Lin-AIG structure

proof spaces

- new paradigm for automatic verification
- automata

- Marc Segelken: ω-Cegar [CAV 2007]
- verification for networked traffic control systems

Abstraction and Counterexample-guided Construction of ω-automata for Model Checking of Step-discrete linear Hybrid Models*

Marc Segelken

CAV 2007, LNCS 4590, pp. 433-448, 2007.

^{*} This research was partially supported by the German Research Foundation (DFG) under contract SFB/TR 14 AVACS, see www.avacs.org

Construction of ω -automaton. Thus we follow a strategy of completely ruling out generalized conflicts by constructing an ω -automaton A_C that accepts all runs not containing any known conflict as a subsequence. Considering partial regulation laws as atomic characters and C as the set of all previously detected generalized conflicts, the behavior of A_C can be described by an LTL formula:

$$A_C \models \neg \mathbf{F} \bigvee_{(\rho_1, \rho_2, \dots, \rho_k) \in C} (\rho_1 \wedge \mathbf{X}(\rho_2 \wedge \mathbf{X}(\dots \wedge \mathbf{X}\rho_n)))$$
(21)

automata over an unusual alphabet ...

proof spaces

- new paradigm for automatic verification
- automata

- Marc Segelken: ω-Cegar [CAV 2007]
- verification for networked traffic control systems

no execution violates assertion = no execution reaches error location

automaton

alphabet: {statements}

(p != 0) (n >= 0) (p == 0)

(p != 0) (p != 0) (n >= 0) (p==0) (p == 0) (p==0)

(p==0)

(p != 0)

(p==0)

automaton constructed from unsatisfiability proof

accepts all traces with the same unsatisfiability proof

does a proof exist for every trace ?

$$(p != 0) (n >= 0) (n == 0) (n == 0) (p := 0) (n--) (n--) (n >= 0) (n >= 0) (p == 0)$$

 Σ

 $\Sigma \setminus \{ n - - \}$

 $\Sigma \setminus \{ n-- \}$

 Σ

does a proof exist for every trace ?

?

automata constructed from unsatisfiable core

are not sufficient in general

(verification algorithm not complete)

proof spaces

- automata
- Marc Segelken: ω-Cegar [CAV 2007]
- verification for networked traffic control systems

Hoare triples proving infeasibility :

{ true }
$$x:=0$$
 { $x \ge 0$ }
{ $x \ge 0$ } $y:=0$ { $x \ge 0$ }
{ $x \ge 0$ } $x++$ { $x \ge 0$ }
{ $x \ge 0$ } $x=-1$ { false }

infeasibility \Leftrightarrow pre/postcondition pair (true, false)

Hoare triples \mapsto automaton

Hoare triples \mapsto automaton

sequencing of Hoare triples \mapsto run of automaton

inference rule for sequencing

proof space

infinite space of Hoare triples "{pre} trace {post}"

closed under inference rule of sequencing

generated from finite basis of Hoare triples "{pre} stmt {post}"

proof of sample trace:

{ true }
$$x:=0$$
 { $x \ge 0$ }
{ $x \ge 0$ } $y:=0$ { $x \ge 0$ }
{ $x \ge 0$ } $x++$ { $x \ge 0$ }
{ $x \ge 0$ } $x=-1$ { false }

finite basis of Hoare triples "{pre} stmt {post}"

can be obtained from proofs of sample traces

proof space

infinite space of Hoare triples "{pre} trace {post}"

closed under inference rule of sequencing

finite basis of Hoare triples "{pre} stmt {post}" \mapsto automaton

sequencing of Hoare triples in basis \mapsto run of automaton

proof space

infinite space of Hoare triples "{pre} trace {post}"

closed under inference rule of sequencing

generated from finite basis of Hoare triples "{pre} stmt {post}"

paradigm:

construct proof space

- check proof space

simplify task for program verification:

Don't give a proof.

Show that a proof exists.

automata: existence of accepting run

inclusion check: show that, for every word in the given set, an accepting run *exists* simplify task for program verification:

Show that, for every program execution, a proof exists.