
Proof Spaces
Andreas Podelski

joint work with:
Matthias Heizmann, Jürgen Christ, Daniel Dietsch,
Jochen Hoenicke, Azadeh Farzan, Zachary Kincaid,

Markus Lindenmann, Betim Musa, Christian Schilling,
Alexander Nutz, Stefan Wissert, Evren Ermis

proof spaces

• new paradigm for automatic verification

• automata

• Marc Segelken: ω-Cegar [CAV 2007]

• verification for networked traffic control systems

Ultimate Automizer

Incremental Construction A1, . . . ,An

à la CEGAR

program P

P is correct P is incorrect

AP ✓ A1 [· · · [An ? w 2 ⌃⇤\CORRECT ?

no

take w such that
w 2 AP\A1 [· · · [An

yes

construct An+1 such that
1. w 2 An+1

2. An+1 ✓ ⌃⇤\CORRECT

yes no

w infeasible?

{ infeasible traces }

• Refinement of Trace Abstraction. SAS 2009
• Nested interpolants. POPL 2010
• Interpolant Automata. ATVA 2012
• Ultimate Automizer with SMTInterpol - (Competition Contribution). TACAS 2013
• Automata as Proofs. VMCAI 2013
• Inductive data flow graphs. POPL 2013
• Software Model Checking for People Who Love Automata. CAV 2013
• Ultimate Automizer with Unsatisfiable Cores - (Competition Contribution). TACAS 2014
• Termination Analysis by Learning Terminating Programs. CAV 2014
• Proofs that count. POPL 2014:
• Ultimate Automizer with Array Interpolation - (Competition Contribution). TACAS 2015
• Automated Program Verification. LATA 2015
• Fairness Modulo Theory: A New Approach to LTL Software Model Checking. CAV 2015
• Proof Spaces for Unbounded Parallelism. POPL 2015

Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Jochen Hoenicke, Azadeh Farzan,
Zachary Kincaid, Markus Lindenmann, Betim Musa, Christian Schilling, Alexander Nutz,
 Stefan Wissert, Evren Ermis

invited talk: ETAPS 2012, ATVA 2012, VMCAI 2013, CAV 2013, LATA 2015

proof spaces

• new paradigm for automatic verification

• automata

• Marc Segelken: ω-Cegar [CAV 2007]

• verification for networked traffic control systems

Automating Verification of

Cooperation, Control, and Design in

Traffic Applications !

Werner Damm1,2, Alfred Mikschl1, Jens Oehlerking1, Ernst-Rüdiger Olderog1,
Jun Pang1, André Platzer1, Marc Segelken2, and Boris Wirtz1

1 Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118,
26111 Oldenburg, Germany

2 OFFIS, Escherweg 2, 26121 Oldenburg, Germany

Abstract. We present a verification methodology for cooperating traffic
agents covering analysis of cooperation strategies, realization of strate-
gies through control, and implementation of control. For each layer, we
provide dedicated approaches to formal verification of safety and stability
properties of the design. The range of employed verification techniques
invoked to span this verification space includes application of pre-verified
design patterns, automatic synthesis of Lyapunov functions, constraint
generation for parameterized designs, model-checking in rich theories,
and abstraction refinement. We illustrate this approach with a variant
of the European Train Control System (ETCS), employing layer specific
verification techniques to layer specific views of an ETCS design.

1 Introduction

Our society at large depends on the transportation sector to meet the increased
demands on mobility required for achieving sustained economic growth. Major
initiatives such as ERTRAC3, eSAFETY4 and the car2car consortium in auto-
motive, ACARE5 in avionics, and ERRAC6, ETCS/ERMTS7 in rail drive stan-
dards for inter-vehicle and vehicle to infra-structure cooperation, are thriving to
push safety by enforcing cooperation principles between traffic agents.

Automatic collision avoidance systems form an integral part of such systems,
with domain specific variants ranging from fully automatic protection to partial
automation combined with warning/alerting, to warning combined with direc-
tives. For example, in the automotive domain, based on pre-crash sensing, close

! This work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and Anal-
ysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

3 European Road Transport Research Advisory Council (www.ertrac.org)
4 http://ec.europa.eu/information_society/activities/esafety/
5 Advisory Council for Aeronautics Research in Europe (www.acare4europe.com/)
6 European Rail Research Advisory Council (www.errac.com/)
7 European Rail Traffic Management System (www.ertms.com)

In case that the EoA is a rail-road crossing the train has to lock the rail-road
crossing before the train will reach this point. The train has to initiate a lock
request to the rail-road crossing and the rail-road crossing has to lock the crossing
and acknowledge the lock request. After receiving a safe message the train can
send a request for a new EoA to the RBC. The point to initialize a lock request
to a level crossing is calculated by

x c x = x c − 2.1 · (x time + max send delay) · v (14)

The time to set up the rail-road crossing in a safe state is stored in the x time
variable. These three points (x b, x c and x c x) are updated every time the
brake point state is entered. A spatial view of this scenario is shown in Fig. 4, and

v

EoA

SB

Train

RBC

ST

x_c x_bp

CS afterCS

Fig. 4. Radio-based train control

a snapshot of the dynamical behaviour can be seen in Fig. 5. After explaining
the main ideas to guarantee a safe motion, we continue to discuss Fig. 3. The
transition 1 is enabled after receiving an end-of-authority message from the
RBC. By taking this transition the two variables which count the messages to
the RBC and to the rail-road crossing are initialized to 0. The variable xcross
picks up the information if a rail-road crossing is just in front of the current
position p of the train. The position of the rail-road crossing itself is stored in
the x p variable. The information of the rail-road crossing is read out of the track
data dictionary. If there is no rail-road crossing ahead and the current position
of the train is before the point to initialize the service brake and before the
point to initialize an EoA-request the transition 9 will be taken and an ev drive
event is generated to switch into the driving mode of the train. In case there is a
rail-road crossing ahead the transition 8 will be enabled. If the train has passed
the point to send an EoA-request to the RBC but in front of the x b point the
transition 3 will be taken and a get n seg event is generated to initialize the
request of a new EoA. If there is a rail-road crossing ahead and the train has
passed the x c x point a lock request is generated by the ev com cross event
released by the transition 4 . If the train has passed the x b point the transition
7 is enabled which leads to the service brake mode by the ev brake event. In

0 1000 2000 3000 4000 5000
−200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

time

di
st

an
ce

end of authority
communication to RBC
communication to level crossing
current position of train

Fig. 5. Snapshot of dynamic calculations

case of an emergency halt indicated by the ev halt event the brake point state
will be left by enabling the transition 6 to the halt state.

The supervision of the velocity of the train is modelled in the fourth state
labelled move (Fig. 6). The previous value of the desired speed is set to 0 on
entering the default init state and stored in the o v d variable. The drive mode
is switched on by receiving the ev drive event enabling the transition 1 and the
variable d c (for drive control) is set, the desired speed at the current position
of the train is read out of the track data dictionary and stored in v d and the
slope of the current track segment is stored in the variable slope. The destination
state is change.

– If the current desired speed is different from the previous value the transi-
tion 2 is enabled and this change is signalled through a reset on the c v d
variable, state switch and the transition 3 . The new value of the current
desired speed is stored in the move state.

– If there is no change in the desired speed, the transition 4 is enabled and
the move state is entered.

– If a brake event (ev brake) occurs in the change state, the transition 12 is
enabled, the drive mode is switched off (d c = 0), the service brake mode is
switched on (sb c = 1) and finally the init brake state is entered.

holistic verification methodology

dedicated methods for:
- cooperation layer
- control layer
- design layer

model checking for discrete hybrid systems
- Lin AIGs
- ω-Cegar

For the drive train system, we have performed this kind of analysis for a fixed
sampling rate (0.1 seconds) and a discrete controller obtained by a textbook dis-
cretization method for linear systems (zero-pole matching transformation [17]).
The resulting sampled-data system consists of the continuous-time drive train
dynamics given in Subsection 2.1 and the discretized controller, and it can still
be proven stable by this method.

7 Proving Safety of Local Control and Design Models

In this section, we present our approach of model checking safety properties of
local control and design models of the example. We first outline our general
methods for verification of hybrid systems with non-trivial discrete behaviour
(Subsections 7.1 and 7.3); then we build both continuous-time and discrete-time
models of the system based on its Matlab-Simulink description and show model
checking results of these models (Subsections 7.2 and 7.4).

7.1 Model Checking Hybrid Systems with Large Discrete State
Spaces

We have proposed an approach for verification of hybrid systems, which con-
tain large discrete state spaces and simple continuous dynamics given as con-
stants [11] (methods dealing with richer dynamics, e.g., given as differential
inclusions, are currently under development). Large discrete state space arise
naturally in industrial hybrid systems, due to the need to represent discrete in-
puts, counters, sanity-check bits, possibly multiple concurrent state machines
etc, which typically jointly with properties of sensor values determine the selec-
tion of relevant control laws. Thus this non-trivial discrete behavior cannot be
treated by considering discrete states one by one as in tools based on the notion
of hybrid automata. We have developed a model checker dealing with ACTL
properties for this application class.

...

...
...

...

dp

c1 cm

φ1 φk

q1 qj

d1

mapping between
first-order conditions
and bool. variables

boolean domain variables

continuous domain variables

Represented first-order
predicates

FO conditions

AIG

Fig. 17. The Lin-AIG structure

proof spaces

• new paradigm for automatic verification

• automata

• Marc Segelken: ω-Cegar [CAV 2007]

• verification for networked traffic control systems

Abstraction and Counterexample-guided Construction
of ω-automata for Model Checking of Step-discrete

linear Hybrid Models"

Marc Segelken

OFFIS e.V.

Abstract. For the verification of reactive hybrid systems existing approaches
do not scale well w.r.t. large discrete state spaces, since their excellence
mostly applies to data computations. However, especially control dominated
models of industrial relevance in which computations on continuous data
are comprised only of subsidiary parts of the behavior, these large discrete
state spaces are not uncommon. By exploiting typical characteristics of such
models, the herein presented approach addresses step-discrete linear hybrid
models with large discrete state spaces by introducing an iterative abstraction
refinement approach based on learning reasons of spurious counterexamples
in an ω-automaton. Due to the resulting exclusion of comprehensive classes
of spurious counterexamples, the algorithm exhibits relatively few iterations
to prove or disprove safety properties. The implemented algorithm was
successfully applied to parts of industrial models and shows promising
results.

Key words: automata construction, counterexample guidance, iterative abstrac-
tion refinement, model-checking, step-discrete hybrid systems

1 Introduction

For the analysis of discrete control systems, formal verification has already been
successfully applied in recent years on industrial-sized controllers. However, the
analysis of hybrid systems still represents a challenge, particularly with regard
to controller models modeled and validated with CASE tools such as Statemate,
Scade, Ascet and Simulink, which are typically open-loop discrete-time models
combining a large discrete state space with a nontrivial number of floating point
variables.

Among other approaches, a rich set of different abstraction techniques were
developed for verifying hybrid models, transforming the inherently infinite state
system into a finite-state model. The more sophisticated ones are usually based on
iterative refinement techniques eliminating spurious counterexamples by refining
the abstracted model for subsequent iterations, and by thus making the observed
counterexample impossible to occur again in future runs. A prominent representa-
tive is, e.g., [CFH+03] where path fragments in the discrete state space are excluded.
Other techniques limit the continuous dynamics to simple abstractions based on
rectangular inclusions or polyhedrons such as in HT [HH94], PHAV [Fre05],
Checkmate [SK00] or d/dt [ADM02]. Their typical target models are hybrid sys-
tems where the continuous computations dominate while the discrete part of the
system is only in charge of distinguishing between different modes such that the
system can react by, e.g., applying different continuous control laws. Consequently,
the existing approaches reflect these characteristics by focusing on the continuous
items only, not considering the discrete fragment as a problem.

" This research was partially supported by the German Research Foundation (DFG) under
contract SFB/TR 14 AVACS, see www.avacs.org

Abstraction and Counterexample-guided Construction
of ω-automata for Model Checking of Step-discrete

linear Hybrid Models"

Marc Segelken

OFFIS e.V.

Abstract. For the verification of reactive hybrid systems existing approaches
do not scale well w.r.t. large discrete state spaces, since their excellence
mostly applies to data computations. However, especially control dominated
models of industrial relevance in which computations on continuous data
are comprised only of subsidiary parts of the behavior, these large discrete
state spaces are not uncommon. By exploiting typical characteristics of such
models, the herein presented approach addresses step-discrete linear hybrid
models with large discrete state spaces by introducing an iterative abstraction
refinement approach based on learning reasons of spurious counterexamples
in an ω-automaton. Due to the resulting exclusion of comprehensive classes
of spurious counterexamples, the algorithm exhibits relatively few iterations
to prove or disprove safety properties. The implemented algorithm was
successfully applied to parts of industrial models and shows promising
results.

Key words: automata construction, counterexample guidance, iterative abstrac-
tion refinement, model-checking, step-discrete hybrid systems

1 Introduction

For the analysis of discrete control systems, formal verification has already been
successfully applied in recent years on industrial-sized controllers. However, the
analysis of hybrid systems still represents a challenge, particularly with regard
to controller models modeled and validated with CASE tools such as Statemate,
Scade, Ascet and Simulink, which are typically open-loop discrete-time models
combining a large discrete state space with a nontrivial number of floating point
variables.

Among other approaches, a rich set of different abstraction techniques were
developed for verifying hybrid models, transforming the inherently infinite state
system into a finite-state model. The more sophisticated ones are usually based on
iterative refinement techniques eliminating spurious counterexamples by refining
the abstracted model for subsequent iterations, and by thus making the observed
counterexample impossible to occur again in future runs. A prominent representa-
tive is, e.g., [CFH+03] where path fragments in the discrete state space are excluded.
Other techniques limit the continuous dynamics to simple abstractions based on
rectangular inclusions or polyhedrons such as in HT [HH94], PHAV [Fre05],
Checkmate [SK00] or d/dt [ADM02]. Their typical target models are hybrid sys-
tems where the continuous computations dominate while the discrete part of the
system is only in charge of distinguishing between different modes such that the
system can react by, e.g., applying different continuous control laws. Consequently,
the existing approaches reflect these characteristics by focusing on the continuous
items only, not considering the discrete fragment as a problem.

" This research was partially supported by the German Research Foundation (DFG) under
contract SFB/TR 14 AVACS, see www.avacs.org

Abstraction and Counterexample-Guided Construction
of ω-Automata for Model Checking of Step-Discrete

Linear Hybrid Models"

Marc Segelken

OFFIS e.V.

Abstract. For the verification of reactive hybrid systems existing approaches do
not scale well w.r.t. large discrete state spaces, since their excellence mostly ap-
plies to data computations. However, especially control dominated models of in-
dustrial relevance in which computations on continuous data are comprised only
of subsidiary parts of the behavior, these large discrete state spaces are not un-
common. By exploiting typical characteristics of such models, the herein pre-
sented approach addresses step-discrete linear hybrid models with large discrete
state spaces by introducing an iterative abstraction refinement approach based
on learning reasons of spurious counterexamples in an ω-automaton. Due to the
resulting exclusion of comprehensive classes of spurious counterexamples, the
algorithm exhibits relatively few iterations to prove or disprove safety properties.
The implemented algorithm was successfully applied to parts of industrial models
and shows promising results.

Keywords: automata construction, counterexample guidance, iterative abstrac-
tion refinement, model-checking, step-discrete hybrid systems.

1 Introduction

For the analysis of discrete control systems, formal verification has already been suc-
cessfully applied in recent years on industrial-sized controllers. However, the analysis of
hybrid systems still represents a challenge, particularly with regard to controller models
modeled and validated with CASE tools such as Statemate, Scade, Ascet and Simulink,
which are typically open-loop discrete-time models combining a large discrete state
space with a nontrivial number of floating point variables.

Among other approaches, a rich set of different abstraction techniques were devel-
oped for verifying hybrid models, transforming the inherently infinite state system into
a finite-state model. The more sophisticated ones are usually based on iterative refine-
ment techniques eliminating spurious counterexamples by refining the abstracted model
for subsequent iterations, and by thus making the observed counterexample impossible
to occur again in future runs. A prominent representative is, e.g., [CFH+03] where path
fragments in the discrete state space are excluded. Other techniques limit the continuous
dynamics to simple abstractions based on rectangular inclusions or polyhedrons such

" This research was partially supported by the German Research Foundation (DFG) under con-
tract SFB/TR 14 AVACS, see www.avacs.org.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 433–448, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ments of the discrete transition system as well, especially for huge discrete state
spaces combined with only few regulation laws exhibited by the model.

Construction of ω-automaton. Thus we follow a strategy of completely ruling
out generalized conflicts by constructing an ω-automaton AC that accepts all
runs not containing any known conflict as a subsequence. Considering partial
regulation laws as atomic characters and C as the set of all previously detected
generalized conflicts, the behavior of AC can be described by an LTL formula:

AC |= ¬F
∨

(ρ1,ρ2,...,ρk)∈C

(ρ1 ∧ X(ρ2 ∧ X(... ∧ Xρn))) (21)

Instead of using standard algorithms to translate LTL formulae to Büchi-auto-
mata, we apply an efficient automaton construction algorithm dedicated to the
structure of LTL formulae as presented above, resulting in rather small automata,
especially in comparison to general Büchi-automata construction algorithms [50].

Abstraction refinement. A parallel composition A = A0 × AC ensures that any
(infinite) run not accepted by AC cannot be exhibited by A. With AC being
incrementally extended to not accept conflicts found in subsequent model check-
ing iterations, we get a sequence A1,A2, . . . ,An of refined abstract transition
systems, where the model checker can finally prove that either Ak |= ϕ̂ from
which can be concluded that H |= ϕ or that a counterexample π̂ violates ϕ with
π̂ having a valid projection to a path π in H as computed in the analysis phase.

Remarks. The finite state model checker used to verify the abstract system in
each iteration can be freely exchanged even in between iterations. Thus, advan-
tages of different technologies can be combined by

1. starting with (faster) bounded model checking (BMC) while counterexam-
ples within the given bound can be generated and

2. switching to unbounded model checking (e.g., CTL model checker) if no
counterexamples within a given bound k are found anymore.

This way computation times of iteration cycles can be kept short while being
able to prove if a property ϕ holds for a model (certification). However, since
the approach is a semi-decision one, affirmation of properties might fail even by
using unbounded model checkers.

The restriction to step-discrete linear hybrid models is due to the imple-
mentation only and does not follow from the approach. Currently, only safety
properties can be verified. An extension to CTL-formulae is possible with the
limitation, that valid infinite counterexamples cannot be confirmed as such.

7.4 Discrete-Time Modes and Verification Results

Our abstraction-refinement approach deals with step-discrete linear hybrid sys-
tems modelled as discrete transition graphs, in which assignments and transition

automata over an unusual alphabet ...

proof spaces

• new paradigm for automatic verification

• automata

• Marc Segelken: ω-Cegar [CAV 2007]

• verification for networked traffic control systems

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

`5:

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

`5:

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

no execution violates assertion = no execution reaches error location

`5:

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

automaton

alphabet: {statements}

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(p != 0)
(n >= 0)
(p == 0)

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(p != 0)
(n >= 0)
(p == 0)

(p != 0)

(p==0)

(p != 0)

(p==0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

(p != 0)

(p==0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

(p != 0)

(p==0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

accepts all traces with the same unsatisfiability proof

automaton constructed from unsatisfiability proof

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

?
⊆

does a proof exist for every trace ?

Incremental Construction A1, . . . ,An

à la CEGAR

program P

P is correct P is incorrect

AP ✓ A1 [· · · [An ? w 2 ⌃⇤\CORRECT ?

no

take w such that
w 2 AP\A1 [· · · [An

yes

construct An+1 such that
1. w 2 An+1

2. An+1 ✓ ⌃⇤\CORRECT

yes no

w infeasible?

{ infeasible traces }

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(p != 0)
(n >= 0)
(n == 0)
(p := 0)
(n--)
(n >= 0)
(p == 0)

new trace:

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(p != 0)
(n >= 0)
(n == 0)
(p := 0)
(n--)
(n >= 0)
(p == 0)

(n == 0)

(n--)
(n >= 0)

(n == 0)

(n--)
(n >= 0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(n == 0)

(n--)
(n >= 0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(n == 0)

(n--)
(n >= 0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

⋃
?
⊆

does a proof exist for every trace ?

Incremental Construction A1, . . . ,An

à la CEGAR

program P

P is correct P is incorrect

AP ✓ A1 [· · · [An ? w 2 ⌃⇤\CORRECT ?

no

take w such that
w 2 AP\A1 [· · · [An

yes

construct An+1 such that
1. w 2 An+1

2. An+1 ✓ ⌃⇤\CORRECT

yes no

w infeasible?

{ infeasible traces }

automata constructed from unsatisfiable core

are not sufficient in general

(verification algorithm not complete)

proof spaces

• new paradigm for automatic verification

• automata

• Marc Segelken: ω-Cegar [CAV 2007]

• verification for networked traffic control systems

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

Hoare triples
proving infeasibility :

 infeasibility ⇔ pre/postcondition pair (true, false)

of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

Hoare triples ⟼ automaton

⟼

of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

Hoare triples ⟼ automaton

 sequencing of Hoare triples run of automaton

⟼

⟼

 {p} s {q’}

{q’} s’ {q}

{p} s ; s’ {q}

inference rule for sequencing

proof space

 infinite space of Hoare triples “{pre} trace {post}”

closed under inference rule of sequencing

generated from finite basis of Hoare triples “{pre} stmt {post}”

of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

proof of sample trace:

proof space

 infinite space of Hoare triples “{pre} trace {post}”

closed under inference rule of sequencing

finite basis of Hoare triples “{pre} stmt {post}”

can be obtained from proofs of sample traces

of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

finite basis of Hoare triples “{pre} stmt {post}” ⟼ automaton

 sequencing of Hoare triples in basis run of automaton

⟼

⟼

proof space

 infinite space of Hoare triples “{pre} trace {post}”

closed under inference rule of sequencing

generated from finite basis of Hoare triples “{pre} stmt {post}”

proof space contains “{true} trace {false}”
if

exists sequencing of Hoare triples in basis
if

exists accepting run of automaton

paradigm:

- construct proof space

- check proof space

Don’t give a proof.

Show that a proof exists.

simplify task for program verification:

inclusion check:
show that, for every word in the given set,

an accepting run exists

automata:
existence of accepting run

Show that,
for every program execution,

a proof exists.

simplify task for program verification:

