Using decision procedures for rich data structures

for the verification of real-time systems

Viorica Sofronie-Stokkermans

Joint work with Johannes Faber, Carsten Ihlemann, Swen Jacobs
and with Werner Damm, Matthias Horbach

AVACS Concluding Colloquium, Oldenburg, 29 September 2015.

Problem statement

We consider parametric real time (infinite state) systems

— parametric data, parametric change, parametric topology of the system

Examples:

European Train Control System

= N
78 = S /\\
o - E/\\ﬁ E«E

s
s
il
e 5
o HISnt N
i Lt N
e 2 t 5
paEE iy K
T 5 'y i
—- | — /\ /\ /'\

[N u !
e U\/UL/L/UL/

n (number of trains); Ljarm > 0; 0 < Vimin < Vimax;

Problem statement

We consider parametric real time and hybrid (infinite state) systems

— parametric data, parametric change, parametric topology of the system

Examples:

European Train Control System

o
|
— \
El S = —-—— - E\-——FE—>

i gl b M
g i} ="
Faia ty N
AR i N
— —lt —h\
— — & > /\“ '/\ ™\ —~

SN AT N

n (number of trains); Ljarm > 0; 0 < Vmin < Vmax; ---

Car platoon

Main results

(Our work in AVACS (R1))

e Specification of systems with a complex topology
data structures (arrays, pointer structures)

e Deductive verification: Invariant checking, BMC, Constraints on parameters
(using decision procedures for rich data structures, quantifier elimination)
[Jacobs,VS: PDPAR'06, ENTCS'07], [Faber,Jacobs,VS: IFM'07],
[Faber,lhlemann,Jacobs,VS: IFM'10], [VS: IJCAR'10], [VS: CADE'13]

—> Efficient decision procedures for data structures
local theory extensions [VS: CADE'05, FroCoS'07]

- ordered structures [lhlemann,VS: ISMVL'07]
- theories of arrays & pointers [lhlemann,Jacobs,VS: TACAS'08]

- theories from mathematical analysis [VS: KI'08]
- combinations of local theory extensions [lhlemann,VS: [JCAR'10], [VS: PL'13]

—> Interpolation in local theory extensions — CEGAR
_ [VS: IJCAR’06, LMCS'08], [Rybalchenko,VS: VMCAI'07, JSC'10], [VS: PL’13])

State of the art/Main results

We consider parametric real time and hybrid (infinite state) systems
— parametric data, parametric change, parametric topology

(Previous work often only few aspects of parametricity studied together
approximations/abstraction

Before [Jacobs,VS’06, '07], [Faber, Jacobs, VS’07], [Faber, lhlemann, Jacobs, VS’'10]:
e only parametricity in the data domain: [Platzer, Quesel'09]

e parametric number of components:
[Abdulla et al.’98] timed automata; [Arons et al.’01] finite-state systems

Before [VS: CADE’13], [Damm,Horbach,VS: FroCoS’15]:

e modularity and small model property results for restricted classes of systems
[Kaiser, Kroening et al.’10], [Johnson,Mitra’12], [Abdulla et al'13]

State of the art/Main results

We consider parametric real time and hybrid (infinite state) systems
— parametric data, parametric change, parametric topology

(Previous work often only few aspects of parametricity studied together
approximations/abstraction

Before [Jacobs,VS’06, '07], [Faber, Jacobs, VS’07], [Faber, lhlemann, Jacobs, VS’'10]:
e only parametricity in the data domain: [Platzer, Quesel’09]

e parametric number of components:
[Abdulla et al.’98] timed automata; [Arons et al.’01] finite-state systems

Before [VS: CADE’13], [Damm,Horbach,VS: FroCoS’15]:

e modularity and small model property results for restricted classes of systems

[Kaiser, Kroening et al.’10], [Johnson,Mitra'12], [Abdulla et al'13]

- _J

Our main goal: Reduce complexity by exploiting modularity at various levels:
specification / verification / structurally

State of the art/Main results

We consider parametric real time and hybrid (infinite state) systems
— parametric data, parametric change, parametric topology

(Previous work often only few aspects of parametricity studied together
approximations/abstraction

Before [Jacobs,VS’06, '07], [Faber, Jacobs, VS’07], [Faber, lhlemann, Jacobs, VS’10]:
e only parametricity in the data domain: [Platzer, Quesel’09]

e parametric number of components:
[Abdulla et al.’98] timed automata; [Arons et al.’01] finite-state systems

Before [VS: CADE’13], [Damm,Horbach,VS: FroCoS’15]:

e modularity and small model property results for restricted classes of systems

[Kaiser, Kroening et al.’10], [Johnson,Mitra'12], [Abdulla et al'13]

- _J

Our main goal: Reduce complexity by exploiting modularity at various levels:
specification / verification / structurally

Example 1: Verification of systems of trains

[Faber,lhlemann,Jacobs,VS 2010]

J. Faber, C. Ihlemann, S. Jacobs, V. Sofronie-Stokkermans:
Automatic Verification of Parametric Specifications with Complex

Topologies. Proc. IFM 2010, LNCS 6396, 2010, pp 152-167

25 1
i R /\\
o 5 E/\}:\g |3<:\E

-
-z
i
i | %
I
S R -
//.l PR by
o ty \
e ar i
a7 vy %
et B S Cope— B85

S AT AT A A TA AT A

Main goal: exploit modularity at various levels

1. Specification
e Use the modular language COD, which allows us to separately specify
— processes (as Communicating Sequential Processes, CSP),
— data (using Object-Z, OZ), and
— time (using the Duration Calculus, DC).

Main goal: exploit modularity at various levels

1. Specification

e Use the modular language COD, which allows us to separately specify
— processes (as Communicating Sequential Processes, CSP),
— data (using Object-Z, OZ), and
— time (using the Duration Calculus, DC).

2. Verification
e Verification tasks: invariant checking.

— Problem: reasoning in complex data structures
— Solution: hierarchical and modular reasoning

e Use of COD allows us to decouple:
— Verification tasks concerning data (OZ)
— Verification tasks concerning durations (DC)

Allows us to impose/verify conditions on the single components which
guarantee safety of the overall system.

Main goal: exploit modularity at various levels

3. Structurally

e Running example: Complex track topologies

\\ [[[\\ \/ [[[\/

Main goal: exploit modularity at various levels

3. Structurally

e Running example: Complex track topologies

— One line track: Verification
— Complex track topology:
- decomposition into family of linear tracks

- prove that safety of whole system follows from
safety for the controller of a linear track.

Overview

Modular Specifications: COD

Modular Verification

Modularity at structural level

Implementation; experimental results

Conclusions

Overview

e Modular Specifications: COD

e Modular Verification

e Modularity at structural level

e |Implementation; experimental results

e Conclusions

Modular Specifications: CSP-0Z-DC (COD)

COD [Hoenicke,Olderog'02] allows us to specify in a modular way:

e the control flow of a system
using Communicating Sequential Processes (CSP)

e the state space and its change
using Object-Z (OZ)

e (dense) real-time constraints over durations of events
using the Duration Calculus (DC)

Modular Specifications: CSP-0Z-DC (COD)

COD [Hoenicke,Olderog'02] allows us to specify in a modular way:

e the control flow of a system
using Communicating Sequential Processes (CSP)

e the state space and its change
using Object-Z (OZ)

e (dense) real-time constraints over durations of events
using the Duration Calculus (DC)

Benefits:

e Compositionality: it suffices to prove safety properties for the separate
components to prove safety of the entire system

e high-level tool support given by Syspect (easy-to-use front-end to
formal real-time specifications, with a graphical user interface).

-

Interface

[
Example: Controller for line track (RBC
ple:
P
~
]
o
o
2]
— RBC o
method enter : [s17 : Segment; t0? : Train; t1? : Train; t27 : Train|
method leave : [Is? : Segment; It? : Train]
local_chan alloc, req, updPos, updSpd
main £ ((enter — main) State2 £ ((alloc — State3)
[m] (leave — main) O (enter — State2)
n
m] (updSpd — Statel)) a (leave — State2)) &
Statel £ ((enter — Statel) State3 £ ((enter — State3) 3
o]
] (leave — Statel) O (leave — State3) O‘r"u
m] (req — State2)) O (updPos — main))
SegmentData — TrainData
train : Segment — Train [Train on segment] segm : Train — Segment [Train segment]
req : Segment — 7 [Requested by train] next : Train — Train [Next train]
alloc : Segment — 7 [Allocated by train] spd : Train — R [Speed]
pos : Train — R [Current position]
prev : Train — Train [Prev. train]
— Init
sd : SegmentData Vt : Trainl train(segm(t)) = t
td : TrainData Vt : Trainl next(prev(t)) = t
R V't : Trainl prev(next(t)) = t
Vt : Trainltid(t) > 0 Vt : TrainT0 < pos(t) < length(segm(t)) ©
Vtl, t2 : Train | t1 & t2[tid(t1) +# tid(t2) Vt : TrainT0 < spd(t) < Imax(segm(t)) e
Vs : Segmentl prevs(nexts(s)) = s V't : Trainl alloc(segm(t)) = tid(t) _g
Vs : SegmentTl nexts(prevs(s)) = s Vt : Trainl alloc(nexts(segm(t))) = tid(t) 2
Vs : Segment[sid(s) > 0 V length(segm(t)) — bd(spd(t)) > pos(t) P
Vs : Segment[sid(nexts(s)) > sid(s) Vs : Segmentl segm(train(s)) = s c
Vsl, s2 : Segment | sl # s2[sid(s1) # sid(s2) ;
Vs : Segment | s # snill length(s) > d + gmax - At c
Vs : Segment | s # snill0 < Imax(s) A Imax(s) < gmax bg
Vs : Segmentllmax(s) > Imax(prevs(s)) — decmax - At =
Vsl, s2 : Segmentl tid(incoming(sl)) # tid(train(s2)) i
9]
—effect_updSpd
A(spd)
Vt : Train | pos(t) < length(segm(t)) — d A spd(t) — decmax - At > 0
Tmax{0, spd(t) — decmax - At} < spd’(t) < Imax(segm(t))
Vt : Train | pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)
Fmax{0, spd(t) — decmax - At} < spd’(t) < min{Imax(segm(t)), Imax(nexts(segm(t)))}
Vt : Train | pos(t) > length(segm(t)) — d N — alloc(nexts(segm(t))) = tid(t)
Fspd’ (t) = max{0, spd(t) — decmax - At}
0
U
3
10 ”
[}
)
(0]
o
o
)

Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events:

e updSpd (speed update)
e req (request update)
e alloc (allocation update)

o (position update)

Between these events, trains may leave or enter the track (at specific
segments), modeled by the events leave and enter.

11

Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events
with corresponding COD schemata:

CSP:

method enter : [s1? : Segment; t07? : Train; t17 : Train; t27 : Train]
method /eave : [Is? : Segment; [t7 : Train]

local_chan alloc, req, , updSpd

main=((updSpd—Statel) Statel=((req—State2) State2=((alloc— State3) State3=((

—main)
O(/eave—main) O (/leave— Statel) O (/leave— State2) O (/leave— State3)
O(enter—main)) O (enter— Statel)) O(enter— State?2)) O (enter— State3))

12

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

13

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

e 1. Data classes declare function symbols that can change their values

during runs of the system

Data structures:

train: trains

e 2-sorted pointers

_ SegmentData

segm: segments

train : Segment — Train

req : Segment — 7
alloc : Segment — Z

[Train on segment]
[Requested by train]

[Allocated by train]

E/}(\EC =

ol odb

_ TrainData

S A A A A T A

segm : Train — Segment
[Train segment]

next : Train — Train [Next train]
spd : Train — R [Speed]
pos : Train — R [Current position]
prev : Train — Train [Prev. train]

13

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

e 1. Data classes declare function symbols that can change their values
during runs of the system, and are used in the OZ part of the
specification.

e 2. Axioms: define properties of the data structures and system

parameters which do not change

e gmax : R (the global maximum speed),

e decmax : R (the maximum deceleration of trains),

e d : R (a safety distance between trains),

e Properties of the data structures used to model trains/segments

13

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

e 3. Init schema. describes the initial state of the system.
e trains - doubly-linked list; placed correctly on the track segments
e all trains respect their speed limits.

e 4. Update rules specify updates of the state space executed when the
corresponding event from the CSP part is performed.
Example: Speed update

effect_updSpd
A(spd)

Vt : Train | pos(t) < length(segm(t)) — d A spd(t) — decmax - At > 0

max{0, spd(t) — decmax - At} < spd’(t) < Imax(segm(t))
Vt : Train | pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)

max{0, spd(t) — decmax - At} < spd’(t) < min{Imax(segm(t)), Imax(nexts(segm(t)))}
Vt : Train | pos(t) > length(segm(t)) — d N — alloc(nexts(segm(t))) = tid(t)

Fspd’ (t) = max{0, spd(t) — decmax - At}

14

Timed train controller (Train)

Train consists of three timed components running in parallel.

1. Update the train’'s position.
This component contains DC formulae of the form:

—(true ; $ updPos ; (¢ < At) ; L updPos ; true),
—(true ; L updPos ; (¢ > c) ;] updPos ; true),

that specify lower/upper time bounds on updPos events.

2. Check if train is beyond the safety distance to the end of the segment.

If so, it starts braking within a short reaction time.

3. Request extension of the movement authority from the RBC
(may be granted or rejected).

15

Interaction RBC/Train

_ « req 1 @] TrainData
Train RBC o
grant SegmentData
1 [updPos reject 1 1 updPos
1 | updSpd 1 | updSpd

Environment

Overview

e Modular Specifications: CSP-OZ-DC

e Modular Verification

e Modularity at structural level

e |Implementation; experimental results

e Conclusions

17

Modular Verification

COD — 2 g signature of S; Ts theory of S; Tg transition constraint system

specification Init(x); Update(x, x”)

Given: Safe(x) formula (e.g. safety property)

e Invariant checking
(1) 75 Init(x) — Safe(x) (Safe holds in the initial state)
(2) =75 Safe(x)AUpdate(x, X’)—Safe(x”) (Safe holds before = holds after update)

e Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps,
l.e. for all 0 < j < k:

Init(xp) A Update;(xg, x1) A - -+ A Update, (xj_1, xj) A =Safe(x;) =7 L

18

Trains on a linear track

E«E

AL AL bl

s _/L/U L/k/ _/\\/

Example 1: Speed Update
pos(t) < length(segm(t)) —d — 0 < spd’(t) < Imax(segm(t))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)
— 0 < spd’(t) < min(Imax(segm(t)), Imax(nexts(segm(t))))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) # tid(t)
— spd’(t) = max(spd(t) — decmax, 0)

19

Trains on a linear track

/‘\\:\/\/\

AL

s _/L/U L/k/ \./k/

Example 1: Speed Update
pos(t) < length(segm(t)) —d — 0 < spd’(t) < Imax(segm(t))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)
— 0 < spd’(t) < min(Imax(segm(t)), Imax(nexts(segm(t))))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) # tid(t)
— spd’(t) = max(spd(t) — decmax, 0)

Proof task:
Safe(pos, next, prev, spd) A SpeedUpdate(pos, next, prev, spd, spd’) — Safe(pos’, next, prev, spd’)

19

Incoming and outgoing trains

E/‘—_,\b\(_\l:\ —-——bBE

A N\

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s; # nullg, t; # null, train(s) # t1, alloc(sy) = idt(t1)

t=£t1, ids(segm(t))<ids(si), next:(t)=nulls, alloc(s)=tid(t;) — next’(t)=t; A next’(t;)=null;
t#ty, ids(segm(t))<ids(s1), alloc(sy)=tid(t1), next;(t)#nulls, ids(segm(next:(t)))<ids(s1)

— next’ (t)=next;(t)

.t;étl, ids(segm(t))>ids(s1) — next’(t)=next;(t)

20

Incoming and outgoing trains

E= (\E«E
%%

= |

| |

L A A A A SANTA

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s; # null, t; # null, train(s) # t1, alloc(sy) = idt(t1)

t=£t1, ids(segm(t))<ids(si), next:(t)=nulls, alloc(s;)=tid(t;) — next’(t)=t; A next’(t;)=null;
t#ty, ids(segm(t))<ids(s1), alloc(sy)=tid(t1), next:(t)#nulls, ids(segm(next:(t)))<ids(s1)

— next’ (t)=next:(t)

.t;étl, ids(segm(t))>ids(s1) — next’(t)=next;(t)

20

Safety property

Safety property we want to prove:
no two different trains ever occupy the same track segment:

(Safe) Vi1, tr segm(ty) = segm(t2) — t; = to

J

.

In order to prove that (Safe) is an invariant of the system, we need to find a

suitable invariant (Inv;) for every control location i of the TCS, and prove:

(1) (Inv;) = (Safe) for all locations i and

(2) the invariants are preserved under all transitions of the system,
(Inv;) A (Update) = (Inv?)

whenever (Update) is a transition from location i to j .

Safety property

Safety property we want to prove:
no two different trains ever occupy the same track segment:

(Safe) Vi1, tr segm(ty) = segm(t2) — t1 = to

\, J

In order to prove that (Safe) is an invariant of the system, we need to find a
suitable invariant (Inv;) for every control location i of the TCS, and prove:

(1) (Inv;) = (Safe) for all locations i and

(2) the invariants are preserved under all transitions of the system,
(Inv;) A (Update) = (Inv?)

whenever (Update) is a transition from location i to j .

Here: Inv; generated by hand (use poss. of generating counterexamples with H-PILoT)

21

Verification problems

(1) (Inv;) = (Safe) for all locations i and

(2) the invariants are preserved under all transitions of the system,
(Inv;) A (Update) = (Inv?)

whenever (Update) is a transition from location i to j .

Ground satisfiability problems for pointer data structures
Problem: Axioms, Invariants: are universally quantified

Our solution: Hierarchical reasoning in local theory extensions

22

Modularity in automated reasoning

Examples of theories we need to handle

e Invariants

(Invy) Vt : Train. pc # InitState A alloc(nexts(segm(t))) # tid(t)

— length(segm(t)) — bd(spd(t)) > pos(t) 4 spd(t) - At
(Invo) Vit : Train. pc # InitState A pos(t) > length(segm(t)) — d

— spd(t) < Imax(nexts(segm(t)))

23

Modularity in automated reasoning

Examples of theories we need to handle

e Invariants
(Invy) Vt : Train. pc # InitState A alloc(nexts(segm(t))) # tid(t)
— length(segm(t)) — bd(spd(t)) > pos(t) 4 spd(t) - At
(Invo) Vit : Train. pc # InitState A pos(t) > length(segm(t)) — d
— spd(t) < Imax(nexts(segm(t)))
e Update rules

Vt:gi(t) — s <spd’(t) <t

Vt:on(t) — sp <spd’(t) <t,

23

Modularity in automated reasoning

Examples of theories we need to handle

e Invariants

(Invy) Vt : Train. pc # InitState A alloc(nexts(segm(t))) # tid(t)

— length(segm(t)) — bd(spd(t)) > pos(t) 4 spd(t) - At
(Invo) Vit : Train. pc # InitState A pos(t) > length(segm(t)) — d

— spd(t) < Imax(nexts(segm(t)))

e Update rules
Vt:¢i(t) — s <spd(t) <t

Vt:on(t) — sp <spd’(t) <t,

e Underlying theory: theory of many-sorted pointers, real numbers, ...

23

Local theory extensions

Our approach: Find complete instantiations of univ. quantified variables

[VS'05] £oCXg U YX; K clauses axiomatizing functions in ¥; 7o Xo-theory;

~

(Loc) To € 7T1 = ToUK is local, if for any (finite) set of ground clauses G,
ToUKUG =L iff ToUK[G]UG EL

always

“—
=N locality

Various notions of locality, depending of the instances to be considered
closure operator on ground terms: [lhlemann,Jacobs,VS'08, lhlemann,VS'10]

24

Local theory extensions

Our approach: Find complete instantiations of univ. quantified variables

[VS'05] £oCXg U YX; K clauses axiomatizing functions in ¥; 7o Xo-theory;

r

(Loc) To € 7T1 = ToUK is local, if for any (finite) set of ground clauses G,

ToUKUGEL iff ToUK[G]UG =L
always

<=
= locality

.

Various notions of locality, depending of the instances to be considered
closure operator on ground terms: [lhlemann,Jacobs,VS'08, lhlemann,VS'10]

Main advantages: +— hierarchical reduction to proof tasks in 7y
— decision procedure for satisfiability of ground clauses
— implementation H-PILoT [lhlemann,VS'2009]

24

Example: doubly-linked lists

C

S

B

B a

L

N

L

A0

Vp (p # null A p.next # null — p.next.prev = p)

Vp (p # null A p.prev # null — p.prev.next = p)

A c#null A c.nextZnull A d#null A d.next#null A c.next=d.next Ac #d = L

25

Example: doubly-linked lists

(c#£null A c.next#null —c.next.prev=c) (c.next£null A c.next.next#null —c.next.next.prev=c.next)

(d#null A d.next##null—d.next.prev=d) (d.next#null A d.next.next#null— d.next.next.prev=d.next)

A c#null A c.nextZnull A d#null A d.next#null A c.next=d.next Ac#d = L

Similar results also if numerical info is stored in list

26

The good news

The following sets of formulae define local theory extensions:

e Updates (according to a partition of the state space)
e The invariants we consider

e The axioms for many-sorted pointer structures we consider

27

The good news

The following sets of formulae define local theory extensions:

e Updates (according to a partition of the state space)
e The invariants we consider

e The axioms for many-sorted pointer structures we consider

To show:

T> = T1 U Update(next, ...next’, ...) T2 U =lnv(next’) =1

G

T1 = To U Inv(next, ...)

To = (Pointers, R)

UIFUR

27

The good news

The following sets of formulae define local theory extensions:

e Updates (according to a partition of the state space)
e The invariants we consider

e The axioms for many-sorted pointer structures we consider
To show:

T> = T1 U Update(next, ...next’, ...) T2 U =lnv(next”) =L

G

J
T1 = To U Inv(next, ...) 71 U Update[G] A G L

7

To = (Pointers, R) ToUInv[G']A G’ =L
UIFUR UIF UR U (PointerAx[G”'] U G")o =L

H-PILoT: verification/ models/QE — constraints on parameters

27

Overview

e Modular Specifications: CSP-OZ-DC

e Modular Verification

e Modularity at structural level

e |Implementation; experimental results

e Conclusions

28

Modularity at structural level

e Complex track topologies

Assumptions:
e No cycles
e in-degree (out-degree) of associated graph at most 2.

Approach:
e Decompose the system in trajectories (linear rail tracks; may overlap)
e Task 1: - Prove safety for trajectories with incoming/outgoing trains
- Conclude that for control rules in which trains have sufficient
freedom (and if trains are assigned unique priorities) safety
of all trajectories implies safety of the whole system
e [ask 2: - General constraints on parameters which guarantee safety

29

Overview

e Modular Specifications: CSP-OZ-DC

e Modular Verification

e Modularity at structural level

e Implementation; experimental results

e Conclusions

30

Tool Chain

(Syspect R TCS ARMC

| UML — CSP-OZ- DC i [PEA too|k.t]—{H PILoT Prover |

Y

A

Experimental results

(Syspect) TCS ARMC

""""""""" PEA

| UML — CSP-0Z-DC H——{ PEA too|k.tj—{H PILoT J<=] Prover

x """""""""),
Verification of RBC | (Syspect + PEA) (H-PILoT + Yices) (Yices alone)
(Inv) unsat
Part 1 11s (2s 52s
Part 2 11s 124s 131s
speed update 11s 8s 45s
(Safe) sat Os 8s (+ model) time out
Consistency 13s 3s (Unknown) 2s

(obtained on: AMD64, dual-core 2 GHz, 4 GB RAM)

Verification of Train: 8 parallel components, > 3300 transitions,
28 real-valued variables, clocks (infinite state system).
For this reason, the verification took 26 hours

31

Summary

Main approach: Exploit modularity in specification /verification /structure

Contributions: [Faber, Ihlemann, Jacobs, VS, 2010]

e We augmented existing techniques for the verification of real-time
systems to cope with rich data structures like pointer structures (and
identified a decidable fragment of this theory).

e \We established various modularity results.

e We implemented our approach in a new tool chain taking high-level
specifications in terms of COD as input.

32

Beyond Yes/No

We consider parametric systems

— parametric data, parametric change, parametric environment (functions)

— parametric topology of the system (data structures)

r

\.

Given: Safety property (formula @)
Task: 1. Check if constraints on parameters guarantee safety
2. Infer relationships between parameters,
resp. properties of the functions modeling the changes
which ensure that the safety property ® is an invariant
3. Find models (situations when safety property does not hold)

[VS; IJCAR'10) and [VS: CADE’'13)
e Use the “good” properties of theories occurring in verification

e Exploit possibilities for

* hierarchical reasoning (1), quantifier elimination (2), model building (3)

33

Further extensions

[Damm, Horbach, VS: FroCoS'15] Modularity results and small model
property results for (decoupled) families of linear hybrid automata

O\ O Examples: D am oo
/ A

Sensors + Communication Channels

Safety properties: Vi1, ..., ix @sate(i1, ..., i)
Collision free: Vi, j(lane(i)=lane(j) A pos(i)>pos(j) A i#j — pos(i)—pos(j)>d)

34

Conclusions

Main approach: Exploit modularity in specification /verification /structure
Application areas:

e Verification of real time systems [Faber,lhlemann,Jacobs,VS'10]

e Verification of hybrid systems [Damm,Horbach,VS'15]
Main idea:

e Use locality of the decidable fragment of the theory of pointers and of
updates to simplify verification tasks.

e By-product: Small model property, complexity estimation

e Parametric verification and model building possible
Implementations

e Chain tool for real time systems

e Verification tool for families of LHA

35

Conclusions

Main approach: Exploit modularity in specification /verification /structure
Application areas:

e Verification of real time systems [Faber,lhlemann,Jacobs,VS'10]

e Verification of hybrid systems [Damm,Horbach,VS'15]
Main idea:

e Use locality of the decidable fragment of the theory of pointers and of
updates to simplify verification tasks.

e By-product: Small model property, complexity estimation

e Parametric verification and model building possible

Ongoing and future work: More complex combinations/properties
— Time-bounded reachability conditions (e.g. overtaking manoeuvers)

— Invariant generation

35

