
Using decision procedures for rich data structures

for the verification of real-time systems

Viorica Sofronie-Stokkermans

Joint work with Johannes Faber, Carsten Ihlemann, Swen Jacobs

and with Werner Damm, Matthias Horbach

AVACS Concluding Colloquium, Oldenburg, 29 September 2015.

1

Problem statement

We consider parametric real time (infinite state) systems

– parametric data, parametric change, parametric topology of the system

Examples:

n (number of trains); lalarm > 0; 0 < vmin < vmax; ...

2

Problem statement

We consider parametric real time and hybrid (infinite state) systems

– parametric data, parametric change, parametric topology of the system

Examples:

n (number of trains); lalarm > 0; 0 < vmin < vmax; ...

sideback

back

sidefront

7

1 10

5

3

Car platoon

2

Main results

Our work in AVACS (R1)

• Specification of systems with a complex topology

data structures (arrays, pointer structures)

• Deductive verification: Invariant checking, BMC, Constraints on parameters

(using decision procedures for rich data structures, quantifier elimination)

[Jacobs,VS: PDPAR’06, ENTCS’07], [Faber,Jacobs,VS: IFM’07],

[Faber,Ihlemann,Jacobs,VS: IFM’10], [VS: IJCAR’10], [VS: CADE’13]

7→ Efficient decision procedures for data structures

local theory extensions [VS: CADE’05, FroCoS’07]

- ordered structures [Ihlemann,VS: ISMVL’07]

- theories of arrays & pointers [Ihlemann,Jacobs,VS: TACAS’08]

- theories from mathematical analysis [VS: KI’08]

- combinations of local theory extensions [Ihlemann,VS: IJCAR’10], [VS: PL’13]

7→ Interpolation in local theory extensions 7→ CEGAR

[VS: IJCAR’06, LMCS’08], [Rybalchenko,VS: VMCAI’07, JSC’10], [VS: PL’13]

3

State of the art/Main results

We consider parametric real time and hybrid (infinite state) systems

– parametric data, parametric change, parametric topology

Previous work often only few aspects of parametricity studied together

approximations/abstraction

Before [Jacobs,VS’06, ’07], [Faber, Jacobs, VS’07], [Faber, Ihlemann, Jacobs, VS’10]:

• only parametricity in the data domain: [Platzer, Quesel’09]

• parametric number of components:

[Abdulla et al.’98] timed automata; [Arons et al.’01] finite-state systems

Before [VS: CADE’13], [Damm,Horbach,VS: FroCoS’15]:

• modularity and small model property results for restricted classes of systems

[Kaiser, Kroening et al.’10], [Johnson,Mitra’12], [Abdulla et al’13]

4

State of the art/Main results

We consider parametric real time and hybrid (infinite state) systems

– parametric data, parametric change, parametric topology

Previous work often only few aspects of parametricity studied together

approximations/abstraction

Before [Jacobs,VS’06, ’07], [Faber, Jacobs, VS’07], [Faber, Ihlemann, Jacobs, VS’10]:

• only parametricity in the data domain: [Platzer, Quesel’09]

• parametric number of components:

[Abdulla et al.’98] timed automata; [Arons et al.’01] finite-state systems

Before [VS: CADE’13], [Damm,Horbach,VS: FroCoS’15]:

• modularity and small model property results for restricted classes of systems

[Kaiser, Kroening et al.’10], [Johnson,Mitra’12], [Abdulla et al’13]

Our main goal: Reduce complexity by exploiting modularity at various levels:

specification / verification / structurally

4

State of the art/Main results

We consider parametric real time and hybrid (infinite state) systems

– parametric data, parametric change, parametric topology

Previous work often only few aspects of parametricity studied together

approximations/abstraction

Before [Jacobs,VS’06, ’07], [Faber, Jacobs, VS’07], [Faber, Ihlemann, Jacobs, VS’10]:

• only parametricity in the data domain: [Platzer, Quesel’09]

• parametric number of components:

[Abdulla et al.’98] timed automata; [Arons et al.’01] finite-state systems

Before [VS: CADE’13], [Damm,Horbach,VS: FroCoS’15]:

• modularity and small model property results for restricted classes of systems

[Kaiser, Kroening et al.’10], [Johnson,Mitra’12], [Abdulla et al’13]

Our main goal: Reduce complexity by exploiting modularity at various levels:

specification / verification / structurally

4

Example 1: Verification of systems of trains

[Faber,Ihlemann,Jacobs,VS 2010]

J. Faber, C. Ihlemann, S. Jacobs, V. Sofronie-Stokkermans:

Automatic Verification of Parametric Specifications with Complex

Topologies. Proc. IFM 2010, LNCS 6396, 2010, pp 152-167

5

Main goal: exploit modularity at various levels

1. Specification

• Use the modular language COD, which allows us to separately specify

– processes (as Communicating Sequential Processes, CSP),

– data (using Object-Z, OZ), and

– time (using the Duration Calculus, DC).

6

Main goal: exploit modularity at various levels

1. Specification

• Use the modular language COD, which allows us to separately specify

– processes (as Communicating Sequential Processes, CSP),

– data (using Object-Z, OZ), and

– time (using the Duration Calculus, DC).

2. Verification

• Verification tasks: invariant checking.

7→ Problem: reasoning in complex data structures

7→ Solution: hierarchical and modular reasoning

• Use of COD allows us to decouple:

7→ Verification tasks concerning data (OZ)

7→ Verification tasks concerning durations (DC)

Allows us to impose/verify conditions on the single components which

guarantee safety of the overall system.

6

Main goal: exploit modularity at various levels

3. Structurally

• Running example: Complex track topologies

7

Main goal: exploit modularity at various levels

3. Structurally

• Running example: Complex track topologies

7→ One line track: Verification

7→ Complex track topology:

- decomposition into family of linear tracks

- prove that safety of whole system follows from

safety for the controller of a linear track.

7

Overview

• Modular Specifications: COD

• Modular Verification

• Modularity at structural level

• Implementation; experimental results

• Conclusions

8

Overview

• Modular Specifications: COD

• Modular Verification

• Modularity at structural level

• Implementation; experimental results

• Conclusions

8

Modular Specifications: CSP-OZ-DC (COD)

COD [Hoenicke,Olderog’02] allows us to specify in a modular way:

• the control flow of a system
using Communicating Sequential Processes (CSP)

• the state space and its change
using Object-Z (OZ)

• (dense) real-time constraints over durations of events
using the Duration Calculus (DC)

9

Modular Specifications: CSP-OZ-DC (COD)

COD [Hoenicke,Olderog’02] allows us to specify in a modular way:

• the control flow of a system
using Communicating Sequential Processes (CSP)

• the state space and its change
using Object-Z (OZ)

• (dense) real-time constraints over durations of events
using the Duration Calculus (DC)

Benefits:

• Compositionality: it suffices to prove safety properties for the separate

components to prove safety of the entire system

• high-level tool support given by Syspect (easy-to-use front-end to

formal real-time specifications, with a graphical user interface).

9

Example: Controller for line track (RBC)

︸
︷
︷

︸

In
te
rf
a
ce

︸
︷
︷

︸

C
S
P

p
ar
t

︸
︷
︷

︸

D
a
ta

cl
a
ss
es

︸
︷
︷

︸

S
ta
te

a
n
d
In
it
sc
h
em

a

︷
︷

︸

U
p
d
a
te

ru
le
s

RBC

method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]

method leave : [ls? : Segment; lt? : Train]

local chan alloc , req, updPos, updSpd

main
c
= ((enter → main)

✷ (leave → main)

✷ (updSpd → State1))

State1
c
= ((enter → State1)

✷ (leave → State1)

✷ (req → State2))

State2
c
= ((alloc → State3)

✷ (enter → State2)

✷ (leave → State2))

State3
c
= ((enter → State3)

✷ (leave → State3)

✷ (updPos → main))
SegmentData

train : Segment → Train [Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z [Allocated by train]

TrainData

segm : Train → Segment [Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]

sd : SegmentData

td : TrainData

A

t : TrainΓtid(t) > 0

A

t1, t2 : Train | t1 6= t2Γtid(t1) 6= tid(t2)

A

s : SegmentΓprevs(nexts(s)) = s

A

s : SegmentΓnexts(prevs(s)) = s

A

s : SegmentΓsid(s) > 0

A

s : SegmentΓsid(nexts(s)) > sid(s)

A

s1, s2 : Segment | s1 6= s2Γsid(s1) 6= sid(s2)

A

s : Segment | s 6= snilΓlength(s) > d + gmax · ∆t

A

s : Segment | s 6= snilΓ0 < lmax(s) ∧ lmax(s) ≤ gmax

A

s : SegmentΓlmax(s) ≥ lmax(prevs(s)) − decmax · ∆t

A

s1, s2 : SegmentΓtid(incoming(s1)) 6= tid(train(s2))

Init

A

t : TrainΓtrain(segm(t)) = t

A

t : TrainΓnext(prev(t)) = t

A

t : TrainΓprev(next(t)) = t

A

t : TrainΓ0 ≤ pos(t) ≤ length(segm(t))

A

t : TrainΓ0 ≤ spd(t) ≤ lmax(segm(t))

A

t : TrainΓalloc(segm(t)) = tid(t)

A

t : TrainΓalloc(nexts(segm(t))) = tid(t)
∨ length(segm(t)) − bd(spd(t)) > pos(t)

A

s : SegmentΓsegm(train(s)) = s

effect updSpd

∆(spd)

A

t : Train | pos(t) < length(segm(t)) − d ∧ spd(t) − decmax · ∆t > 0

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ lmax(segm(t))

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts(segm(t))) = tid(t)

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ ¬ alloc(nexts(segm(t))) = tid(t)

Γspd′(t) = max{0, spd(t) − decmax · ∆t}

.

.

.

CSP

OZ

10

Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events:

• updSpd (speed update)

• req (request update)

• alloc (allocation update)

• updPos (position update)

(Request)

(Allocation)

(Speed)

(Enter)
(Leave)

(Enter)
(Leave)

(Enter)
(Leave)

2

34

1

(Enter)
(Leave)

(Position)

Between these events, trains may leave or enter the track (at specific

segments), modeled by the events leave and enter.

11

Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events

with corresponding COD schemata:

CSP: −−−

method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]

method leave : [ls? : Segment; lt? : Train]

local chan alloc, req, updPos, updSpd

main
c
=((updSpd→State1) State1

c
=((req→State2) State2

c
=((alloc→State3) State3

c
=((updPos→main)

✷(leave→main) ✷(leave→State1) ✷(leave→State2) ✷(leave→State3)

✷(enter→main)) ✷(enter→State1)) ✷(enter→State2)) ✷(enter→State3))

−−−

12

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

13

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 1. Data classes declare function symbols that can change their values

during runs of the system

Data structures:

train: trains
• 2-sorted pointers

segm: segments

SegmentData
train : Segment → Train

[Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z

[Allocated by train]

TrainData
segm : Train → Segment

[Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]

13

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 1. Data classes declare function symbols that can change their values

during runs of the system, and are used in the OZ part of the

specification.

• 2. Axioms: define properties of the data structures and system

parameters which do not change

• gmax : R (the global maximum speed),

• decmax : R (the maximum deceleration of trains),

• d : R (a safety distance between trains),

• Properties of the data structures used to model trains/segments

13

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 3. Init schema. describes the initial state of the system.

• trains - doubly-linked list; placed correctly on the track segments

• all trains respect their speed limits.

• 4. Update rules specify updates of the state space executed when the

corresponding event from the CSP part is performed.

Example: Speed update
effect updSpd

∆(spd)

A

t : Train | pos(t) < length(segm(t)) − d ∧ spd(t) − decmax · ∆t > 0

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ lmax(segm(t))

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts(segm(t))) = tid(t)

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ ¬ alloc(nexts(segm(t))) = tid(t)

Γspd′(t) = max{0, spd(t) − decmax · ∆t}

14

Timed train controller (Train)

Train consists of three timed components running in parallel.

1. Update the train’s position.

This component contains DC formulae of the form:

¬(true ; l updPos ; (ℓ < ∆t) ; l updPos ; true),

¬(true ; l updPos ; (ℓ > c) ; l updPos ; true),

that specify lower/upper time bounds on updPos events.

2. Check if train is beyond the safety distance to the end of the segment.

If so, it starts braking within a short reaction time.

3. Request extension of the movement authority from the RBC

(may be granted or rejected).

15

Interaction RBC/Train

16

Overview

• Modular Specifications: CSP-OZ-DC

• Modular Verification

• Modularity at structural level

• Implementation; experimental results

• Conclusions

17

Modular Verification

COD 7→ ΣS signature of S ; TS theory of S ; TS transition constraint system

specification Init(x); Update(x , x′)

Given: Safe(x) formula (e.g. safety property)

• Invariant checking

(1) |=TS
Init(x) → Safe(x) (Safe holds in the initial state)

(2) |=TS
Safe(x)∧Update(x , x′)→Safe(x′) (Safe holds before ⇒ holds after update)

• Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps,
i.e. for all 0 ≤ j ≤ k:

Init(x0) ∧ Update1(x0, x1) ∧ · · · ∧ Updaten(xj−1, xj) ∧ ¬Safe(xj) |=TS
⊥

18

Trains on a linear track

Example 1: Speed Update

pos(t) < length(segm(t)) − d → 0 ≤ spd′(t) ≤ lmax(segm(t))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) = tid(t)

→ 0 ≤ spd′(t) ≤ min(lmax(segm(t)), lmax(nexts (segm(t))))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) 6= tid(t)

→ spd′(t) = max(spd(t) − decmax, 0)

19

Trains on a linear track

Example 1: Speed Update

pos(t) < length(segm(t)) − d → 0 ≤ spd′(t) ≤ lmax(segm(t))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) = tid(t)

→ 0 ≤ spd′(t) ≤ min(lmax(segm(t)), lmax(nexts (segm(t))))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) 6= tid(t)

→ spd′(t) = max(spd(t) − decmax, 0)

Proof task:

Safe(pos, next, prev, spd) ∧ SpeedUpdate(pos, next, prev, spd, spd′) → Safe(pos′, next, prev, spd′)

19

Incoming and outgoing trains

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s1 6= nulls , t1 6= nullt , train(s) 6= t1, alloc(s1) = idt(t1)

t 6=t1, ids(segm(t))<ids(s1), nextt (t)=nullt , alloc(s1)=tid(t1) → next′(t)=t1 ∧ next′(t1)=nullt

t 6=t1, ids(segm(t))<ids(s1), alloc(s1)=tid(t1), nextt (t) 6=nullt , ids(segm(nextt(t)))≤ids(s1)

→ next′(t)=nextt(t)

...
t 6=t1, ids(segm(t))≥ids(s1) → next′(t)=nextt (t)

20

Incoming and outgoing trains

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s1 6= nulls , t1 6= nullt , train(s) 6= t1, alloc(s1) = idt(t1)

t 6=t1, ids(segm(t))<ids(s1), nextt (t)=nullt , alloc(s1)=tid(t1) → next′(t)=t1 ∧ next′(t1)=nullt

t 6=t1, ids(segm(t))<ids(s1), alloc(s1)=tid(t1), nextt (t) 6=nullt , ids(segm(nextt(t)))≤ids(s1)

→ next′(t)=nextt(t)

...
t 6=t1, ids(segm(t))≥ids(s1) → next′(t)=nextt (t)

20

Safety property

Safety property we want to prove:

no two different trains ever occupy the same track segment:

(Safe)

A

t1, t2 segm(t1) = segm(t2) → t1 = t2

In order to prove that (Safe) is an invariant of the system, we need to find a

suitable invariant (Invi) for every control location i of the TCS, and prove:

(1) (Invi) |= (Safe) for all locations i and

(2) the invariants are preserved under all transitions of the system,

(Invi) ∧ (Update) |= (Inv′j)

whenever (Update) is a transition from location i to j .

21

Safety property

Safety property we want to prove:

no two different trains ever occupy the same track segment:

(Safe)

A

t1, t2 segm(t1) = segm(t2) → t1 = t2

In order to prove that (Safe) is an invariant of the system, we need to find a

suitable invariant (Invi) for every control location i of the TCS, and prove:

(1) (Invi) |= (Safe) for all locations i and

(2) the invariants are preserved under all transitions of the system,

(Invi) ∧ (Update) |= (Inv′j)

whenever (Update) is a transition from location i to j .

Here: Invi generated by hand (use poss. of generating counterexamples with H-PILoT)

21

Verification problems

(1) (Invi) |= (Safe) for all locations i and

(2) the invariants are preserved under all transitions of the system,

(Invi) ∧ (Update) |= (Inv′j)

whenever (Update) is a transition from location i to j .

Ground satisfiability problems for pointer data structures

Problem: Axioms, Invariants: are universally quantified

Our solution: Hierarchical reasoning in local theory extensions

22

Modularity in automated reasoning

Examples of theories we need to handle

• Invariants

(Inv1)

A

t : Train. pc 6= InitState ∧ alloc(nexts(segm(t))) 6= tid(t)

→ length(segm(t))− bd(spd(t)) > pos(t) + spd(t) ·∆t

(Inv2)

A

t : Train. pc 6= InitState ∧ pos(t) ≥ length(segm(t))− d

→ spd(t) ≤ lmax(nexts (segm(t)))

23

Modularity in automated reasoning

Examples of theories we need to handle

• Invariants

(Inv1)

A

t : Train. pc 6= InitState ∧ alloc(nexts(segm(t))) 6= tid(t)

→ length(segm(t))− bd(spd(t)) > pos(t) + spd(t) ·∆t

(Inv2)

A

t : Train. pc 6= InitState ∧ pos(t) ≥ length(segm(t))− d

→ spd(t) ≤ lmax(nexts (segm(t)))

• Update rules

A

t : φ1(t) → s1 ≤ spd′(t) ≤ t1

. . .

A

t : φn(t) → sn ≤ spd′(t) ≤ tn

23

Modularity in automated reasoning

Examples of theories we need to handle

• Invariants

(Inv1)

A

t : Train. pc 6= InitState ∧ alloc(nexts(segm(t))) 6= tid(t)

→ length(segm(t))− bd(spd(t)) > pos(t) + spd(t) ·∆t

(Inv2)

A

t : Train. pc 6= InitState ∧ pos(t) ≥ length(segm(t))− d

→ spd(t) ≤ lmax(nexts (segm(t)))

• Update rules

A

t : φ1(t) → s1 ≤ spd′(t) ≤ t1

. . .

A

t : φn(t) → sn ≤ spd′(t) ≤ tn

• Underlying theory: theory of many-sorted pointers, real numbers, ...

23

Local theory extensions

Our approach: Find complete instantiations of univ. quantified variables

[VS’05] Σ0⊆Σ0 ∪Σ; K clauses axiomatizing functions in Σ; T0 Σ0-theory;

(Loc) T0 ⊆ T1 = T0 ∪K is local, if for any (finite) set of ground clauses G ,

T0 ∪ K ∪ G |=⊥ iff T0 ∪ K[G] ∪ G |=⊥
⇐ always
⇒ locality

Various notions of locality, depending of the instances to be considered

closure operator on ground terms: [Ihlemann,Jacobs,VS’08, Ihlemann,VS’10]

24

Local theory extensions

Our approach: Find complete instantiations of univ. quantified variables

[VS’05] Σ0⊆Σ0 ∪Σ; K clauses axiomatizing functions in Σ; T0 Σ0-theory;

(Loc) T0 ⊆ T1 = T0 ∪K is local, if for any (finite) set of ground clauses G ,

T0 ∪ K ∪ G |=⊥ iff T0 ∪ K[G] ∪ G |=⊥
⇐ always
⇒ locality

Various notions of locality, depending of the instances to be considered

closure operator on ground terms: [Ihlemann,Jacobs,VS’08, Ihlemann,VS’10]

Main advantages: 7→ hierarchical reduction to proof tasks in T0
7→ decision procedure for satisfiability of ground clauses
7→ implementation H-PILoT [Ihlemann,VS’2009]

24

Example: doubly-linked lists

A

p (p 6= null ∧ p.next 6= null → p.next.prev = p)

A

p (p 6= null ∧ p.prev 6= null → p.prev.next = p)

∧ c 6=null ∧ c.next 6=null ∧ d 6=null ∧ d .next6=null ∧ c.next=d .next ∧ c 6= d |= ⊥

25

Example: doubly-linked lists

(c 6=null ∧ c.next 6=null→c.next.prev=c) (c.next 6=null ∧ c.next.next6=null→c.next.next.prev=c.next)

(d 6=null ∧ d .next6=null→d .next.prev=d) (d .next6=null ∧ d .next.next6=null→d.next.next.prev=d .next)

∧ c 6=null ∧ c.next 6=null ∧ d 6=null ∧ d .next6=null ∧ c.next=d .next ∧ c 6= d |= ⊥

Similar results also if numerical info is stored in list

26

The good news

The following sets of formulae define local theory extensions:

• Updates (according to a partition of the state space)

• The invariants we consider

• The axioms for many-sorted pointer structures we consider

27

The good news

The following sets of formulae define local theory extensions:

• Updates (according to a partition of the state space)

• The invariants we consider

• The axioms for many-sorted pointer structures we consider

To show:

T2 T2 = T1 ∪ Update(next, ...next′, ...) T2 ∪ ¬Inv(next′)
︸ ︷︷ ︸

G

|=⊥

T1 T1 = T0 ∪ Inv(next, ...)

T0 T0 = (Pointers,R)

UIF∪R

27

The good news

The following sets of formulae define local theory extensions:

• Updates (according to a partition of the state space)

• The invariants we consider

• The axioms for many-sorted pointer structures we consider
To show:

T2 T2 = T1 ∪ Update(next, ...next′, ...) T2 ∪ ¬Inv(next′)
︸ ︷︷ ︸

G

|=⊥

⇓
T1 T1 = T0 ∪ Inv(next, ...) T1 ∪ Update[G] ∧ G

︸ ︷︷ ︸

G ′

|=⊥

⇓
T0 T0 = (Pointers,R) T0 ∪ Inv[G ′] ∧ G ′

︸ ︷︷ ︸

G ′′

|=⊥

⇓
UIF∪R UIF ∪ R ∪ (PointerAx[G ′′] ∪ G ′′)0 |=⊥

H-PILoT: verification/ models/QE 7→ constraints on parameters

27

Overview

• Modular Specifications: CSP-OZ-DC

• Modular Verification

• Modularity at structural level

• Implementation; experimental results

• Conclusions

28

Modularity at structural level

• Complex track topologies

Assumptions:

• No cycles

• in-degree (out-degree) of associated graph at most 2.

Approach:

• Decompose the system in trajectories (linear rail tracks; may overlap)

• Task 1: - Prove safety for trajectories with incoming/outgoing trains

- Conclude that for control rules in which trains have sufficient

freedom (and if trains are assigned unique priorities) safety

of all trajectories implies safety of the whole system

• Task 2: - General constraints on parameters which guarantee safety

29

Overview

• Modular Specifications: CSP-OZ-DC

• Modular Verification

• Modularity at structural level

• Implementation; experimental results

• Conclusions

30

Tool Chain

31

Experimental results

Verification of RBC (Syspect + PEA) (H-PILoT + Yices) (Yices alone)

(Inv) unsat

Part 1 11s 72s 52s
Part 2 11s 124s 131s
speed update 11s 8s 45s

(Safe) sat 9s 8s (+ model) time out

Consistency 13s 3s (Unknown) 2s

(obtained on: AMD64, dual-core 2 GHz, 4 GB RAM)

Verification of Train: 8 parallel components, > 3300 transitions,

28 real-valued variables, clocks (infinite state system).

For this reason, the verification took 26 hours

31

Summary

Main approach: Exploit modularity in specification/verification/structure

Contributions: [Faber, Ihlemann, Jacobs, VS, 2010]

• We augmented existing techniques for the verification of real-time

systems to cope with rich data structures like pointer structures (and

identified a decidable fragment of this theory).

• We established various modularity results.

• We implemented our approach in a new tool chain taking high-level

specifications in terms of COD as input.

32

Beyond Yes/No

We consider parametric systems

– parametric data, parametric change, parametric environment (functions)

– parametric topology of the system (data structures)

Given: Safety property (formula Φ)

Task: 1. Check if constraints on parameters guarantee safety

2. Infer relationships between parameters,

resp. properties of the functions modeling the changes

which ensure that the safety property Φ is an invariant

3. Find models (situations when safety property does not hold)

[VS; IJCAR’10) and [VS: CADE’13)

• Use the “good” properties of theories occurring in verification

• Exploit possibilities for

‘ hierarchical reasoning (1), quantifier elimination (2), model building (3)

33

Further extensions

[Damm, Horbach, VS: FroCoS’15] Modularity results and small model

property results for (decoupled) families of linear hybrid automata

Sensors + Communication Channels

Examples:
sideback

back

sidefront

7

1 10

5

3

Car platoon

Safety properties:

A

i1, . . . , ik φsafe(i1, . . . , il)

Collision free:

A

i , j(lane(i)=lane(j) ∧ pos(i)≥pos(j) ∧ i 6=j → pos(i)−pos(j)>d)

34

Conclusions

Main approach: Exploit modularity in specification/verification/structure

Application areas:

• Verification of real time systems [Faber,Ihlemann,Jacobs,VS’10]

• Verification of hybrid systems [Damm,Horbach,VS’15]

Main idea:

• Use locality of the decidable fragment of the theory of pointers and of

updates to simplify verification tasks.

• By-product: Small model property, complexity estimation

• Parametric verification and model building possible

Implementations

• Chain tool for real time systems

• Verification tool for families of LHA

35

Conclusions

Main approach: Exploit modularity in specification/verification/structure

Application areas:

• Verification of real time systems [Faber,Ihlemann,Jacobs,VS’10]

• Verification of hybrid systems [Damm,Horbach,VS’15]

Main idea:

• Use locality of the decidable fragment of the theory of pointers and of

updates to simplify verification tasks.

• By-product: Small model property, complexity estimation

• Parametric verification and model building possible

Implementations

• Chain tool for real time systems

• Verification tool for families of LHA

Ongoing and future work: More complex combinations/properties

– Time-bounded reachability conditions (e.g. overtaking manoeuvers)

– Invariant generation

35

