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Problem statement

We consider parametric real time (infinite state) systems

— parametric data, parametric change, parametric topology of the system

Examples:

European Train Control System
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Problem statement

We consider parametric real time and hybrid (infinite state) systems

— parametric data, parametric change, parametric topology of the system

Examples:

European Train Control System
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Main results

(Our work in AVACS (R1) )

e Specification of systems with a complex topology
data structures (arrays, pointer structures)

e Deductive verification: Invariant checking, BMC, Constraints on parameters
(using decision procedures for rich data structures, quantifier elimination)
[Jacobs,VS: PDPAR'06, ENTCS'07], [Faber,Jacobs,VS: IFM'07],
[Faber,lhlemann,Jacobs,VS: IFM'10], [VS: IJCAR'10], [VS: CADE'13]

—> Efficient decision procedures for data structures
local theory extensions [VS: CADE'05, FroCoS'07]

- ordered structures [lhlemann,VS: ISMVL'07]
- theories of arrays & pointers [lhlemann,Jacobs,VS: TACAS'08]

- theories from mathematical analysis [VS: KI'08]
- combinations of local theory extensions [lhlemann,VS: [JCAR'10], [VS: PL'13]

—> Interpolation in local theory extensions — CEGAR
\_ [VS: IJCAR’06, LMCS'08], [Rybalchenko,VS: VMCAI'07, JSC'10], [VS: PL’13])




State of the art/Main results

We consider parametric real time and hybrid (infinite state) systems
— parametric data, parametric change, parametric topology

(Previous work often only few aspects of parametricity studied together
approximations/abstraction

Before [Jacobs,VS’06, '07], [Faber, Jacobs, VS’07], [Faber, lhlemann, Jacobs, VS’'10]:
e only parametricity in the data domain: [Platzer, Quesel'09]

e parametric number of components:
[Abdulla et al.’98] timed automata; [Arons et al.’01] finite-state systems

Before [VS: CADE’13], [Damm,Horbach,VS: FroCoS’15]:

e modularity and small model property results for restricted classes of systems
[Kaiser, Kroening et al.’10], [Johnson,Mitra’12], [Abdulla et al'13]
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Our main goal: Reduce complexity by exploiting modularity at various levels:
specification / verification / structurally
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Our main goal: Reduce complexity by exploiting modularity at various levels:
specification / verification / structurally




Example 1: Verification of systems of trains

[Faber,lhlemann,Jacobs,VS 2010]

J. Faber, C. Ihlemann, S. Jacobs, V. Sofronie-Stokkermans:
Automatic Verification of Parametric Specifications with Complex

Topologies. Proc. IFM 2010, LNCS 6396, 2010, pp 152-167
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Main goal: exploit modularity at various levels

1. Specification
e Use the modular language COD, which allows us to separately specify
— processes (as Communicating Sequential Processes, CSP),
— data (using Object-Z, OZ), and
— time (using the Duration Calculus, DC).



Main goal: exploit modularity at various levels

1. Specification

e Use the modular language COD, which allows us to separately specify
— processes (as Communicating Sequential Processes, CSP),
— data (using Object-Z, OZ), and
— time (using the Duration Calculus, DC).

2. Verification
e Verification tasks: invariant checking.

— Problem: reasoning in complex data structures
— Solution: hierarchical and modular reasoning

e Use of COD allows us to decouple:
— Verification tasks concerning data (OZ)
— Verification tasks concerning durations (DC)

Allows us to impose/verify conditions on the single components which
guarantee safety of the overall system.



Main goal: exploit modularity at various levels

3. Structurally

e Running example: Complex track topologies

\\ [ [ [ \\ \/ [ [ [ \/




Main goal: exploit modularity at various levels

3. Structurally

e Running example: Complex track topologies

— One line track: Verification
— Complex track topology:
- decomposition into family of linear tracks

- prove that safety of whole system follows from
safety for the controller of a linear track.
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Modular Specifications: CSP-0Z-DC (COD)

COD [Hoenicke,Olderog'02] allows us to specify in a modular way:

e the control flow of a system
using Communicating Sequential Processes (CSP)

e the state space and its change
using Object-Z (OZ)

e (dense) real-time constraints over durations of events
using the Duration Calculus (DC)



Modular Specifications: CSP-0Z-DC (COD)

COD [Hoenicke,Olderog'02] allows us to specify in a modular way:

e the control flow of a system
using Communicating Sequential Processes (CSP)

e the state space and its change
using Object-Z (OZ)

e (dense) real-time constraints over durations of events
using the Duration Calculus (DC)

Benefits:

e Compositionality: it suffices to prove safety properties for the separate
components to prove safety of the entire system

e high-level tool support given by Syspect (easy-to-use front-end to
formal real-time specifications, with a graphical user interface).



-

Interface

[
Example: Controller for line track (RBC
ple:
P
~
]
o
o
2]
—  RBC o
method enter : [s17 : Segment; t0? : Train; t1? : Train; t27 : Train|
method leave : [Is? : Segment; It? : Train]
local_chan alloc, req, updPos, updSpd
main £ ((enter — main) State2 £ ((alloc — State3)
[m] (leave — main) O (enter — State2)
n
m] (updSpd — Statel)) a (leave — State2)) &
Statel £ ((enter — Statel) State3 £ ((enter — State3) 3
o]
] (leave — Statel) O (leave — State3) O‘r"u
m] (req — State2)) O (updPos — main))
SegmentData — TrainData
train : Segment — Train [Train on segment] segm : Train — Segment [Train segment]
req : Segment — 7 [Requested by train] next : Train — Train [Next train]
alloc : Segment — 7 [Allocated by train] spd : Train — R [Speed]
pos : Train — R [Current position]
prev : Train — Train [Prev. train]
— Init
sd : SegmentData Vt : Trainl train(segm(t)) = t
td : TrainData Vt : Trainl next(prev(t)) = t
R V't : Trainl prev(next(t)) = t
Vt : Trainltid(t) > 0 Vt : TrainT0 < pos(t) < length(segm(t)) ©
Vtl, t2 : Train | t1 & t2[tid(t1) +# tid(t2) Vt : TrainT0 < spd(t) < Imax(segm(t)) e
Vs : Segmentl prevs(nexts(s)) = s V't : Trainl alloc(segm(t)) = tid(t) _g
Vs : SegmentTl nexts(prevs(s)) = s Vt : Trainl alloc(nexts(segm(t))) = tid(t) 2
Vs : Segment[sid(s) > 0 V length(segm(t)) — bd(spd(t)) > pos(t) P
Vs : Segment[sid(nexts(s)) > sid(s) Vs : Segmentl segm(train(s)) = s c
Vsl, s2 : Segment | sl # s2[sid(s1) # sid(s2) ;
Vs : Segment | s # snill length(s) > d + gmax - At c
Vs : Segment | s # snill0 < Imax(s) A Imax(s) < gmax bg
Vs : Segmentllmax(s) > Imax(prevs(s)) — decmax - At =
Vsl, s2 : Segmentl tid(incoming(sl)) # tid(train(s2)) i
9]
—effect_updSpd
A(spd)
Vt : Train | pos(t) < length(segm(t)) — d A spd(t) — decmax - At > 0
Tmax{0, spd(t) — decmax - At} < spd’(t) < Imax(segm(t))
Vt : Train | pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)
Fmax{0, spd(t) — decmax - At} < spd’(t) < min{Imax(segm(t)), Imax(nexts(segm(t)))}
Vt : Train | pos(t) > length(segm(t)) — d N — alloc(nexts(segm(t))) = tid(t)
Fspd’ (t) = max{0, spd(t) — decmax - At}
0
U
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Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events:

e updSpd (speed update)
e req (request update)
e alloc (allocation update)

o (position update)

Between these events, trains may leave or enter the track (at specific
segments), modeled by the events leave and enter.
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Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events
with corresponding COD schemata:

CSP:

method enter : [s1? : Segment; t07? : Train; t17 : Train; t27 : Train]
method /eave : [Is? : Segment; [t7 : Train]

local_chan alloc, req, , updSpd

main=((updSpd—Statel) Statel=((req—State2) State2=((alloc— State3) State3=((

—main)
O(/eave—main) O (/leave— Statel) O (/leave— State2) O (/leave— State3)
O(enter—main)) O (enter— Statel)) O(enter— State?2)) O (enter— State3))

12



Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

13



Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

e 1. Data classes declare function symbols that can change their values

during runs of the system

Data structures:

train: trains

e 2-sorted pointers

_ SegmentData

segm: segments

train : Segment — Train

req : Segment — 7
alloc : Segment — Z

[Train on segment]
[Requested by train]

[Allocated by train]

E/}(\EC =

ol odb

_ TrainData

S A A A A T A

segm : Train — Segment
[Train segment]

next : Train — Train [Next train]
spd : Train — R [Speed]
pos : Train — R [Current position]
prev : Train — Train [Prev. train]

13



Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

e 1. Data classes declare function symbols that can change their values
during runs of the system, and are used in the OZ part of the
specification.

e 2. Axioms: define properties of the data structures and system

parameters which do not change

e gmax : R (the global maximum speed),

e decmax : R (the maximum deceleration of trains),

e d : R (a safety distance between trains),

e Properties of the data structures used to model trains/segments

13



Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

e 3. Init schema. describes the initial state of the system.
e trains - doubly-linked list; placed correctly on the track segments
e all trains respect their speed limits.

e 4. Update rules specify updates of the state space executed when the
corresponding event from the CSP part is performed.
Example: Speed update

effect_updSpd
A(spd)

Vt : Train | pos(t) < length(segm(t)) — d A spd(t) — decmax - At > 0

max{0, spd(t) — decmax - At} < spd’(t) < Imax(segm(t))
Vt : Train | pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)

max{0, spd(t) — decmax - At} < spd’(t) < min{Imax(segm(t)), Imax(nexts(segm(t)))}
Vt : Train | pos(t) > length(segm(t)) — d N — alloc(nexts(segm(t))) = tid(t)

Fspd’ (t) = max{0, spd(t) — decmax - At}

14



Timed train controller (Train)

Train consists of three timed components running in parallel.

1. Update the train’'s position.
This component contains DC formulae of the form:

—(true ; $ updPos ; (¢ < At) ; L updPos ; true),
—(true ; L updPos ; (¢ > c ) ;] updPos ; true),

that specify lower/upper time bounds on updPos events.

2. Check if train is beyond the safety distance to the end of the segment.

If so, it starts braking within a short reaction time.

3. Request extension of the movement authority from the RBC
(may be granted or rejected).

15



Interaction RBC/Train

_ « req 1 @] TrainData
Train RBC o
grant SegmentData
1 [ updPos reject 1 1 updPos
1 | updSpd 1 | updSpd

Environment




Overview

e Modular Specifications: CSP-OZ-DC

e Modular Verification

e Modularity at structural level

e |Implementation; experimental results

e Conclusions
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Modular Verification

COD — 2 g signature of S; Ts theory of S; Tg transition constraint system

specification Init(x); Update(x, x”)

Given: Safe(x) formula (e.g. safety property)

e Invariant checking
(1) 75 Init(x) — Safe(x) (Safe holds in the initial state)
(2) =75 Safe(x)AUpdate(x, X’)—Safe(x”) (Safe holds before = holds after update)

e Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps,
l.e. for all 0 < j < k:

Init(xp) A Update;(xg, x1) A - -+ A Update, (xj_1, xj) A =Safe(x;) =7 L

18



Trains on a linear track
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Example 1: Speed Update
pos(t) < length(segm(t)) —d — 0 < spd’(t) < Imax(segm(t))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)
— 0 < spd’(t) < min(Imax(segm(t)), Imax(nexts(segm(t))))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) # tid(t)
— spd’(t) = max(spd(t) — decmax, 0)

19




Trains on a linear track
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Example 1: Speed Update
pos(t) < length(segm(t)) —d — 0 < spd’(t) < Imax(segm(t))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)
— 0 < spd’(t) < min(Imax(segm(t)), Imax(nexts(segm(t))))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) # tid(t)
— spd’(t) = max(spd(t) — decmax, 0)

Proof task:
Safe(pos, next, prev, spd) A SpeedUpdate(pos, next, prev, spd, spd’) — Safe(pos’, next, prev, spd’)

19




Incoming and outgoing trains
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Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s; # nullg, t; # null, train(s) # t1, alloc(sy) = idt(t1)

t=£t1, ids(segm(t))<ids(si), next:(t)=nulls, alloc(s)=tid(t;) — next’(t)=t; A next’(t;)=null;
t#ty, ids(segm(t))<ids(s1), alloc(sy)=tid(t1), next;(t)#nulls, ids(segm(next:(t)))<ids(s1)

— next’ (t)=next;(t)

.t;étl, ids(segm(t))>ids(s1) — next’(t)=next;(t)

20




Incoming and outgoing trains
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Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s; # null, t; # null, train(s) # t1, alloc(sy) = idt(t1)

t=£t1, ids(segm(t))<ids(si), next:(t)=nulls, alloc(s;)=tid(t;) — next’(t)=t; A next’(t;)=null;
t#ty, ids(segm(t))<ids(s1), alloc(sy)=tid(t1), next:(t)#nulls, ids(segm(next:(t)))<ids(s1)

— next’ (t)=next:(t)

.t;étl, ids(segm(t))>ids(s1) — next’(t)=next;(t)
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Safety property

Safety property we want to prove:
no two different trains ever occupy the same track segment:

(Safe) Vi1, tr segm(ty) = segm(t2) — t; = to

J

.

In order to prove that (Safe) is an invariant of the system, we need to find a

suitable invariant (Inv;) for every control location i of the TCS, and prove:

(1) (Inv;) = (Safe) for all locations i and

(2) the invariants are preserved under all transitions of the system,
(Inv;) A (Update) = (Inv?)

whenever (Update) is a transition from location i to j .



Safety property

Safety property we want to prove:
no two different trains ever occupy the same track segment:

(Safe) Vi1, tr segm(ty) = segm(t2) — t1 = to

\, J

In order to prove that (Safe) is an invariant of the system, we need to find a
suitable invariant (Inv;) for every control location i of the TCS, and prove:

(1) (Inv;) = (Safe) for all locations i and

(2) the invariants are preserved under all transitions of the system,
(Inv;) A (Update) = (Inv?)

whenever (Update) is a transition from location i to j .

Here: Inv; generated by hand (use poss. of generating counterexamples with H-PILoT)

21




Verification problems

(1) (Inv;) = (Safe) for all locations i and

(2) the invariants are preserved under all transitions of the system,
(Inv;) A (Update) = (Inv?)

whenever (Update) is a transition from location i to j .

Ground satisfiability problems for pointer data structures
Problem: Axioms, Invariants: are universally quantified

Our solution: Hierarchical reasoning in local theory extensions

22



Modularity in automated reasoning

Examples of theories we need to handle

e Invariants

(Invy) Vt : Train. pc # InitState A alloc(nexts(segm(t))) # tid(t)

— length(segm(t)) — bd(spd(t)) > pos(t) 4 spd(t) - At
(Invo) Vit : Train. pc # InitState A pos(t) > length(segm(t)) — d

— spd(t) < Imax(nexts(segm(t)))

23



Modularity in automated reasoning

Examples of theories we need to handle

e Invariants
(Invy) Vt : Train. pc # InitState A alloc(nexts(segm(t))) # tid(t)
— length(segm(t)) — bd(spd(t)) > pos(t) 4 spd(t) - At
(Invo) Vit : Train. pc # InitState A pos(t) > length(segm(t)) — d
— spd(t) < Imax(nexts(segm(t)))
e Update rules

Vt:gi(t) — s <spd’(t) <t

Vt:on(t) — sp <spd’(t) <t,
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Modularity in automated reasoning

Examples of theories we need to handle

e Invariants

(Invy) Vt : Train. pc # InitState A alloc(nexts(segm(t))) # tid(t)

— length(segm(t)) — bd(spd(t)) > pos(t) 4 spd(t) - At
(Invo) Vit : Train. pc # InitState A pos(t) > length(segm(t)) — d

— spd(t) < Imax(nexts(segm(t)))

e Update rules
Vt:¢i(t) — s <spd(t) <t

Vt:on(t) — sp <spd’(t) <t,

e Underlying theory: theory of many-sorted pointers, real numbers, ...

23



Local theory extensions

Our approach: Find complete instantiations of univ. quantified variables

[VS'05] £oCXg U YX; K clauses axiomatizing functions in ¥; 7o Xo-theory;

~

(Loc) To € 7T1 = ToUK is local, if for any (finite) set of ground clauses G,
ToUKUG =L  iff ToUK[G]UG EL

always

“—
=N locality

Various notions of locality, depending of the instances to be considered
closure operator on ground terms: [lhlemann,Jacobs,VS'08, lhlemann,VS'10]

24



Local theory extensions

Our approach: Find complete instantiations of univ. quantified variables

[VS'05] £oCXg U YX; K clauses axiomatizing functions in ¥; 7o Xo-theory;

r

(Loc) To € 7T1 = ToUK is local, if for any (finite) set of ground clauses G,

ToUKUGEL iff ToUK[G]UG =L
always

<=
= locality

.

Various notions of locality, depending of the instances to be considered
closure operator on ground terms: [lhlemann,Jacobs,VS'08, lhlemann,VS'10]

Main advantages: +— hierarchical reduction to proof tasks in 7y
— decision procedure for satisfiability of ground clauses
— implementation H-PILoT [lhlemann,VS'2009]

24



Example: doubly-linked lists

C

S

B

B a

L

N

L

A0

Vp (p # null A p.next # null — p.next.prev = p)

Vp (p # null A p.prev # null — p.prev.next = p)

A c#null A c.nextZnull A d#null A d.next#null A c.next=d.next Ac #d = L

25



Example: doubly-linked lists

(c#£null A c.next#null —c.next.prev=c) (c.next£null A c.next.next#null —c.next.next.prev=c.next)

(d#null A d.next##null—d.next.prev=d) (d.next#null A d.next.next#null— d.next.next.prev=d.next)

A c#null A c.nextZnull A d#null A d.next#null A c.next=d.next Ac#d = L

Similar results also if numerical info is stored in list

26



The good news

The following sets of formulae define local theory extensions:

e Updates (according to a partition of the state space)
e The invariants we consider

e The axioms for many-sorted pointer structures we consider

27



The good news

The following sets of formulae define local theory extensions:

e Updates (according to a partition of the state space)
e The invariants we consider

e The axioms for many-sorted pointer structures we consider

To show:

T> = T1 U Update(next, ...next’, ...) T2 U =lnv(next’) =1

G

T1 = To U Inv(next, ...)

To = (Pointers, R)

UIFUR

27



The good news

The following sets of formulae define local theory extensions:

e Updates (according to a partition of the state space)
e The invariants we consider

e The axioms for many-sorted pointer structures we consider
To show:

T> = T1 U Update(next, ...next’, ...) T2 U =lnv(next”) =L

G

J
T1 = To U Inv(next, ...) 71 U Update[G] A G L

7

To = (Pointers, R) ToUInv[G']A G’ =L
UIFUR UIF UR U (PointerAx[G”'] U G")o =L

H-PILoT: verification/ models/QE — constraints on parameters

27



Overview

e Modular Specifications: CSP-OZ-DC

e Modular Verification

e Modularity at structural level

e |Implementation; experimental results

e Conclusions

28



Modularity at structural level

e Complex track topologies

Assumptions:
e No cycles
e in-degree (out-degree) of associated graph at most 2.

Approach:
e Decompose the system in trajectories (linear rail tracks; may overlap)
e Task 1: - Prove safety for trajectories with incoming/outgoing trains
- Conclude that for control rules in which trains have sufficient
freedom (and if trains are assigned unique priorities) safety
of all trajectories implies safety of the whole system
e [ask 2: - General constraints on parameters which guarantee safety

29



Overview

e Modular Specifications: CSP-OZ-DC

e Modular Verification

e Modularity at structural level

e Implementation; experimental results

e Conclusions
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Tool Chain

(Syspect R TCS ARMC

| UML — CSP-OZ- DC i [PEA too|k.t]—{H PILoT Prover |

Y

A




Experimental results

(Syspect ) TCS ARMC

""""""""" PEA

| UML — CSP-0Z-DC H——{ PEA too|k.tj—{H PILoT J<=] Prover

x """"""""" ),
Verification of RBC | (Syspect + PEA)  (H-PILoT + Yices) (Yices alone)
(Inv) unsat
Part 1 11s (2s 52s
Part 2 11s 124s 131s
speed update 11s 8s 45s
(Safe) sat Os 8s (+ model) time out
Consistency 13s 3s (Unknown) 2s

(obtained on: AMD64, dual-core 2 GHz, 4 GB RAM)

Verification of Train: 8 parallel components, > 3300 transitions,
28 real-valued variables, clocks (infinite state system).
For this reason, the verification took 26 hours
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Summary

Main approach: Exploit modularity in specification /verification /structure

Contributions: [Faber, Ihlemann, Jacobs, VS, 2010]

e We augmented existing techniques for the verification of real-time
systems to cope with rich data structures like pointer structures (and
identified a decidable fragment of this theory).

e \We established various modularity results.

e We implemented our approach in a new tool chain taking high-level
specifications in terms of COD as input.
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Beyond Yes/No

We consider parametric systems

— parametric data, parametric change, parametric environment (functions)

— parametric topology of the system (data structures)

r

\.

Given: Safety property (formula @)
Task: 1. Check if constraints on parameters guarantee safety
2. Infer relationships between parameters,
resp. properties of the functions modeling the changes
which ensure that the safety property ® is an invariant
3. Find models (situations when safety property does not hold)

[VS; IJCAR'10) and [VS: CADE’'13)
e Use the “good” properties of theories occurring in verification

e Exploit possibilities for

* hierarchical reasoning (1), quantifier elimination (2), model building (3)
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Further extensions

[Damm, Horbach, VS: FroCoS'15] Modularity results and small model
property results for (decoupled) families of linear hybrid automata

O\ O Examples: D am oo
/ A

Sensors + Communication Channels

Safety properties: Vi1, ..., ix @sate(i1, ..., i)
Collision free: Vi, j(lane(i)=lane(j) A pos(i)>pos(j) A i#j — pos(i)—pos(j)>d)
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Conclusions

Main approach: Exploit modularity in specification /verification /structure
Application areas:

e Verification of real time systems [Faber,lhlemann,Jacobs,VS'10]

e Verification of hybrid systems [Damm,Horbach,VS'15]
Main idea:

e Use locality of the decidable fragment of the theory of pointers and of
updates to simplify verification tasks.

e By-product: Small model property, complexity estimation

e Parametric verification and model building possible
Implementations

e Chain tool for real time systems

e Verification tool for families of LHA
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Conclusions

Main approach: Exploit modularity in specification /verification /structure
Application areas:

e Verification of real time systems [Faber,lhlemann,Jacobs,VS'10]

e Verification of hybrid systems [Damm,Horbach,VS'15]
Main idea:

e Use locality of the decidable fragment of the theory of pointers and of
updates to simplify verification tasks.

e By-product: Small model property, complexity estimation

e Parametric verification and model building possible

Ongoing and future work: More complex combinations/properties
— Time-bounded reachability conditions (e.g. overtaking manoeuvers)

— Invariant generation
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